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Key Points

• Enasidenib inhibits mIDH2,
leading to leukemic cell
differentiation with
emergence of functional
mIDH2 neutrophils in rrAML
patients.

• RAS pathway mutations and
increased mutational burden
overall are associated with a
decreased response rate to
mIDH2 inhibition.

RecurrentmutationsatR140andR172 in isocitratedehydrogenase2 (IDH2) occur inmany

cancers, including ∼12% of acute myeloid leukemia (AML). In preclinical models these

mutations cause accumulation of the oncogenic metabolite R-2-hydroxyglutarate (2-HG)

and induce hematopoietic differentiation block. Single-agent enasidenib (AG-221/CC-

90007), a selective mutant IDH2 (mIDH2) inhibitor, produced an overall response rate of

40.3% in relapsed/refractoryAML (rrAML) patientswithmIDH2 in a phase 1 trial. However,

its mechanism of action and biomarkers associated with response remain unclear. Here,

we measured 2-HG, mIDH2 allele burden, and co-occurring somatic mutations in se-

quential patient samples from theclinical trial andcorrelated thesewith clinical response.

Furthermore, we used flow cytometry to assess inhibition of mIDH2 on hematopoietic

differentiation.Weobservedpotent 2-HGsuppression in bothR140 andR172mIDH2AML

subtypes,with different kinetics, which preceded clinical response. Suppression of 2-HG

alone did not predict response, because most nonresponding patients also exhibited

2-HG suppression. Complete remission (CR) with persistence of mIDH2 and normaliza-

tion of hematopoietic stem and progenitor compartments with emergence of functional

mIDH2 neutrophils were observed. In a subset of CR patients, mIDH2 allele burden was reduced and remained undetectable with

response. Co-occurringmutations in NRAS and other MAPK pathway effectors were enriched in nonresponding patients, consistent

with RAS signaling contributing to primary therapeutic resistance. Together, these data support differentiation as the main

mechanism of enasidenib efficacy in relapsed/refractory AML patients and provide insight into resistance mechanisms to inform

future mechanism-based combination treatment studies. (Blood. 2017;130(6):732-741)

Introduction

Somaticmutations in the isocitrate dehydrogenase 2 (IDH2) gene occur
at conserved arginine residues (R140 andR172). Thesemutant proteins
possess neomorphic enzymatic activity resulting in R-2-hydroxyglu-
tarate (R-2-HG) accumulation.1-4 R-2-HG competitively inhibits a set
of a-ketoglutarate-dependent enzymes, including the Ten-eleven
translocation family of 5-methylcytosine hydroxylases and the
Jumonji-C domain histone demethylases.5,6 This inhibition leads to
DNA hypermethylation,7 increased repressive histone methylation,6

and impaired hematopoietic differentiation. Accordingly, inhibition of
mutant IDH2 (mIDH2) reduces 2-HGlevels and restores hematopoietic
differentiation in vitro.6,8-10

Although both mutations are characterized by neomorphic en-
zymatic activity, myeloid malignancies with R140 and R172 IDH2
mutations are distinct with respect to clinical outcome, comutational
profile, and molecular classification.11-13 In preclinical studies,
enasidenib (AG-221/CC-90007), a small-molecule inhibitor of
mIDH2, reduced serum 2-HG, DNA hypermethylation, and repressive
histone marks and promoted hematopoietic differentiation in R140 and
R172 mIDH2 models.14-17 In a phase 1/2 clinical trial, enasidenib
demonstrated clinical activity in patients with both R140 and R172
mIDH2 relapsed/refractoryAML (rrAML)with an overall response rate
(ORR) of 40.3%.18 Here, we analyzed samples from this study to
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elucidate the mechanisms of action of enasidenib in R140 and R172
mIDH2 rrAML patients and to identify response biomarkers to targeted
mIDH2 therapy.

Materials and methods

Study participants and treatment

Analyseswere performedon rrAMLpatient samples collected from theAG-221-
C-001 study with informed consent. Patients were included in the AG-221-C-
001 trial and in the translational studies here based on IDH2mutations detected
by local testing. A retrospective central in vitro diagnostic test confirmed
mutation status with a concordance rate above 95%. Enasidenib was
administered to patients as described in the approved study protocol. Patient
sample disposition indicating samples analyzed in each assay is shown in
supplemental Figure 1 (available on the Blood Web site). Patient baseline
characteristics and clinical responses of subpopulations analyzed in comparison
with the rrAML cohort as a whole are provided in supplemental Table 1.
Outcome data reflect a study cutoff date of 15 April 2016.

Measurement and analysis of 2-HG

Serum samples were collected from patients at screening within 28 days before
the first dose of enasidenib or predose on day 1 of each treatment cycle. 2-HG
concentration was determined with liquid chromatography tandem mass
spectrometry by Covance, Inc. (formerly Tandem Labs), according to an
analytically validated method. Baseline total 2-HG was determined to be either
the average of the screening sample and the predose cycle 1 sample or either one
or the other sample if both were not available. Maximum suppression of 2-HG
levels was determined by comparing the lowest level of 2-HG observed on-
treatment to baseline 2-HG level. Time to maximum suppression was the first
time point at which the 2-HG level was within 5% of maximum suppression for
that patient.

Sysmex OncoBeam digital polymerase chain reaction

Bone marrow, peripheral blood samples, or both were collected at screening 28
days before the first dose of enasidenib and during treatment andwere processed
to peripheral blood mononuclear cells and bone marrow mononuclear cells
(BMMCs).Measurement ofmutant andwild-type IDH2wasmadewith Sysmex
BEAMing technology. Briefly, DNA was extracted from the samples,
preamplified in a multiplex polymerase chain reaction (PCR) and amplified
with nested primers in an emulsion PCR on the surface of magnetic beads in
water-in-oil emulsions. Fluorescently labeled probes specific to the IDH2
mutation and to the wild-type sequence were hybridized to the uncovered DNA
fragments on the bead surface. Fluorescently labeled beads were quantified with
flow cytometry.

Blast percentage determination by flow and mIDH2 assessment

Multiparameter flow cytometry was performed on bone marrow aspirates at
diagnosis and at day 1 of each treatment cycle. Abnormal populations were
identified by antigen expression as described previously.19,20 Briefly, up to 1.5
million cells from freshly drawn bone marrow aspirate were stained with 3 10-
“color” panels (supplemental Table 2), washed, and acquired on a fluorescence-
activated cell sorter (FACS) Canto-10 cytometer (BD Biosciences, San Jose,
CA). The results were analyzedwith customWoodlist software (generous gift of
Wood BL, University of Washington). Following flow assessment, samples
were lysed and assessed for mIDH2 as part of a 28-gene amplicon capture-based
next-generation sequencing (NGS) assay at Memorial Sloan Kettering Cancer
Center.

Hematopoietic immunophenotyping and mIDH2 assessment in

flow-sorted cells

Viably frozenBMMCs fromnormal donors (N512) or rrAMLpatients (N59)
were thawed, stained with antibodies listed in supplemental Table 3, and sorted

on either a BD LSR Fortessa or a BD FACSAria Fusion (Becton Dickinson,
Oxford, UK). Sorted fractions (.95% purity) of Lin-ve CD342CD1172 cells,
which represent mature myelomonocytic cells, and unsorted mononuclear cells
were processed for genomic DNA (gDNA). Whole-genome amplification
(RepliG, Qiagen, UK) was carried out in samples with fewer than 104 cells or
where extracted gDNAwas inadequate. Analyses of mIDH2 at R140 and R172
codons were completed by PCR of exon 4 of the IDH2 gene, followed by NGS
using a MiSeq (Illumina, UK).

Phagocytosis assay

Neutrophilswere collected fromfresh, citratedbloodby centrifugation, redblood
cell sedimentation, and Percoll gradient cell separation. Purified neutrophils (13
106) were incubated with 3mL of fluorescent green latex beads (Sigma, France)
for 15minutes at 37°C in 1mL of RPMImedium, supplementedwith 10% heat-
inactivated fetal bovine serum (Sigma). Cells were washed, fixed in 3.3%
paraformaldehyde, stained with 49,6-diamidino-2-phenylindole, and imaged
with a laser-scanning TCS SP5 confocal microscope (Leica, France). The
percentage of neutrophils containing latex beads was calculated by scoring 5
different fields of view for each sample. IDH2 mutations were confirmed in
neutrophils with a TaqMan SNP Genotyping Assay (Life Technologies,
Carlsbad, CA).

FoundationOne Heme panel

FoundationOne Heme analysis was conducted in a clinical laboratory
improvement amendments–certified laboratory by Foundation Medicine, Inc.
Briefly, fresh bone marrow, peripheral blood samples, or both were collected
from patients, and DNA and RNA were extracted. Nucleic acid libraries were
prepared, captured using custom bait sets, and sequenced to high depth by using
Illumina HiSeq for 405 cancer-related genes by DNA sequencing and 265
frequently rearranged genes by RNA sequencing. Only known or likely gene
mutations that are the targets of therapies—either approved or in clinical trials, or
are otherwise known drivers of oncogenesis published in the literature—were
included in this analysis.21 Comutational burden was calculated as the total sum
of all unique known and likely somatic mutations, other than IDH2, identified in
each patient.

Calculation of variant allele frequency (VAF)

In each assay, VAF was calculated as the measurement of a mutated allele
(ie, mIDH2) over the measurement of a mutated allele 1 wild-type allele (ie,
mIDH21wild-type IDH2) in each sample.

Statistical analysis

Statistical analyses were performed with GraphPad Prism software using
methods noted in thefigure and table legends.Mutational associationswith either
ORR or complete remission (CR) rate were assessed through a 2-tailed Fisher’s
exact test on a 23 2 contingency table analyzing the sum of patients achieving a
response or not (ORR $ partial remission [PR]; and CR $ morphologic
leukemia-free state [MLFS]) versus the presence or absence of gene mutation
identified by FoundationOne Heme. Associations between prognostic risk
groups and response were assessed using a 2-tailed chi-square test for trend on a
3 3 2 contingency table analyzing the sum of patients achieving a response
or not (ORR $ PR; CR 5 CR) versus risk classification as favorable,
intermediate, or adverse, as stated in the figure legends.

Results

mIDH2 inhibition is associated with potent reduction of 2-HG in

mIDH2 AML

Total 2-HG measurements in blood correlate with R-2-HG levels,
tumor mass, clinical response to cytotoxic therapy and are a proposed
biomarker of IDH2 mutations.4 Therefore, we assessed total 2-HG
levels in 125 rrAMLpatientswith available samples prior to enasidenib
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treatment and every 28 days during therapy.Median 2-HG suppression
(defined as the maximum extent of suppression in comparison with
pretherapy) was 90.6%, consistent with potent target inhibition. 2-HG
suppression in patientswithR172mIDH2was less than in patientswith
R140 mIDH2 rrAML (median suppression of 70.9% and 94.9%,
respectively [P, .001]), consistentwith preclinical data and an interim
analysis of samples from study AG-221-C-001 (Figure 1A).14-16,22-24

Of note, 5 patients during treatment had an increase in 2-HG. Two of
these patients achieved a best response of PR despite never having 2-
HG levels below baseline in multiple samples analyzed. None of these
patients were observed to have co-occurring mutations in IDH1.

We next assessed 2-HG suppression in patients dosed with ,100
mg, 100mg, or.100mg of enasidenib daily. Althoughwe observed a
trend toward greater 2-HG suppression at higher doses inR140mIDH2
patients, there were no statistical differences in maximal 2-HG
suppression among the 3 dosing groups (P 5 .054 for ,100 mg vs
100 mg, and P5 .094 for 100 mg vs.100 mg) (Figure 1B). In R172
mIDH2 patients, 2-HG suppression was more variable across dosing
groups (95% confidence intervals: 43.9% to 102.9%, 10.7% to 61.0%,
and 62.5% to 82.7% in the,100-mg, 100-mg, and.100-mg dosing
groups, respectively). A statistical difference in 2-HG suppression was
observed between the 100-mg and.100-mgdosing cohorts.However,
the 100-mg group was confounded by 4 patients whose 2-HG levels
increased, and no statistical difference was found in 2-HG suppression
between,100-mg and.100-mg dosing groups (P5 .152 for,100
mg vs 100 mg; P5 .022 for 100 mg vs .100 mg; and P5 .955 for
,100mg vs.100mg). Furthermore, response rates for R172mIDH2
patients were not statistically different between the 100-mg and.100-
mg dosing groups analyzed (ORR, 44.0% and 58.8%, respectively;
P5 .530; Fisher’s exact test), suggesting no additional clinical benefit
for R172 mIDH2 patients in dosing above 100 mg. Importantly, no
difference in time to maximum 2-HG suppression between patients
dosed with ,100 mg, 100 mg, or .100 mg of enasidenib daily was
observed either (supplemental Figure 2A).Together, 2-HGsuppression
and efficacy data indicate that the 100-mg enasidenib dose is
biologically and therapeutically active in rrAML patients withmIDH2,
regardless of the specific mutation.

We next assessed the relationship between pre-enasidenib–therapy
2-HG levels and clinical response. We observed no significant
difference in baseline 2-HG levels between patients achieving a CR,
patients obtaining any response (R 5 CR, CR with incomplete
hematologic recovery [CRi], CR with incomplete platelet count
recovery [CRp], MLFS, or PR) and patients who did not respond (no
response [NR]5 stable disease or progressive disease) (Figure 1C).We
assessed whether timing of pharmacodynamic response, defined as
maximal 2-HG suppression, correlated to the best clinical response.
Although the mean cycle number to maximal 2-HG suppression, best
response (BR), and CR was ;1 treatment cycle later in R172 versus
R140 patients (3 vs 2 cycles for maximal 2-HG suppression and BR,
and 6 vs 5 cycles for CR) (Figure 1D), the ORR and CR rates for
patients with R172 and R140 mutations were not statistically
different.18 These data demonstrate that the kinetics of target 2-HG
inhibition parallel the kinetics of clinical response without effect on
response attainment.

Clinical responses to mIDH2 inhibition do not correlate with

mIDH2 allele burden

We evaluated whether mIDH2 allele burden at baseline or changes on-
therapy correlated with response to enasidenib by quantification of
mIDH2VAF on unsorted samples by using digital PCR and NGS.We
observed a significant correlation between digital PCR andNGS for 45

matched patient samples run on both assays (R2 5 0.59, P , .0001)
(supplemental Figure 2B). A positive correlation trend was also
observed between mIDH2 VAF and 2-HG levels at screening in 17
patients with available samples; however, it was not statistically
significant (R25 0.21,P5 .0636) (supplemental Figure 2C). Notably,
mIDH2 allele burden was highly heterogeneous at screening among
patients, ranging from low-level mutant positivity to fully clonal
(;50%) (Figure 2A; supplemental Figure 3A).No association between
mIDH2 VAF at screening and clinical response was observed, and
patients achievingCRhad both low and highmIDH2 burden. To assess
the possibility that ancestral (clonal) and nonancestral (subclonal)
mIDH2diseaseexhibit different responses,we analyzed theVAFof co-
occurring mutations in the 30 patients with low mIDH2 VAF (,0.2).
Eight of these patients, 5 responders and 3 nonresponders, had co-
occurring mutations with VAF . 0.4, consistent with mIDH2 oc-
curring as a nonancestral event (supplemental Figure 4). Taken together
with data showing responses in both clonal and subclonal mIDH2,
these data suggest that patients with ancestral or nonancestral mIDH2
clones can respond to enasidenib.

Next,we analyzedchanges in absolutemIDH2VAFfromscreening
to best response. A decrease in mIDH2 VAF was more commonly
observed in responding patients than was an increase; however, only
one half of the patients showed a VAF change of more than 5
percentage points (Figure 2B; supplemental Figure 3B-C). Similar to
recent results reported for a subset ofmIDH1AMLpatients treatedwith
an mIDH1 inhibitor, longitudinal analysis by digital PCR in our cohort
identified 9 of 29 CR patients for whom mIDH2 became undetectable
with enasidenib treatment.25 Interestingly, all 9 patients had R140
mIDH2 rrAML (50% of the 18 R140 CR patients), and loss of both a
minor mIDH2 subclone and amore substantivemIDH2 clone (;40%)
were observed. In 8 of these patients, mIDH2 remained undetectable
with continued treatment, consistent with persistent molecular re-
mission (Figure 2C). However, no significant difference was observed
in an initial analysis of event-free survival between patients achieving
molecular remission versus patients achieving CR without molecular
remission (295.9 vs 259.9 days, respectively; P 5 .784; event-free
survival was defined according to protocol as the interval from date of
first dose to date of documented relapse, progression, or death due to
any cause, whichever occurred first). Finally, we assessed the
relationship between 2 measures of leukemic burden: bone marrow
blast count (flow cytometry) andmIDH2VAF (genetic) in 9 additional
patients who responded to enasidenib (Figure 2D). In 6 of these
patients, we observed marked blast count decreases to near 0% in
aspirates with concomitant mIDH2 VAF above 10%. These data
demonstrate thatmIDH2 cells persist inmost patients achievingCRand
that a reduction in mIDH2 allele burden during treatment is neither
necessary nor sufficient for clinical response to enasidenib.

Clinical response to mIDH2 inhibition is associated with

induction of myeloid differentiation

Given that a reduction in mIDH2 VAF was not required for CR, we
hypothesized that enasidenib might induce a clinical response by
promoting leukemiccell differentiation.Wemeasured themagnitudeof
different immunophenotypic compartments in the hematopoietic
hierarchy, before and during treatment, in 5 mIDH2 rrAML patients
who achievedCRor PR (Figure 3A-B). Prior to treatment, all 5 patients
had expanded myeloid leukemic progenitor or precursor populations.
Enasidenib treatment resulted innear normalizationof the immature-to-
mature cell population ratio at CR and PR in patients with both R140
(201-023 and 203-002) and R172 (104-036, 201-010, and 201-011)
mIDH2. In contrast, no improvement of immature-to-mature ratio was
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observed in 5 nonresponding patients (supplemental Figure 5). In the
responding patients, we assayedmIDH2VAFbyNGS in bulk BMMC
and flow-sorted mature myeloid cells (Figure 3B). In 4 of 5 patients
achievingCR or PR,mIDH2VAF remained stable (201-010, 201-011,
104-036) or increased (201-023) in both cell populations.

We extended these findings by measuring mIDH2 VAF in peri-
pheral blood neutrophils prior to enasidenib treatment and at the time of
CR in 7 additional patients who achieved CR (Figure 3C, top panel). In
6 of 7 cases, mIDH2 VAF remained constant between pretherapy
leukemic cells and neutrophils at CR, consistent with differentiation of
mIDH2 leukemia cells intomature neutrophils. Furthermore, in patient
104-018, theVAFof additional coassociatedAMLmutations remained
unchanged in neutrophils at CR, consistent with enasidenib-mediated
differentiation of a transformed leukemic clone (Figure 3C, middle
panel). In contrast, in the 1 patient whose mIDH2VAF dropped to 0%
in mature neutrophils at CR (104-010), the VAF of other AML-
associated mutations showed heterogeneous changes consistent with
clonal selection rather than loss of all clonally derived leukemic cells
(Figure 3C, top and bottom panels). Next, we investigated the fun-
ctional status of differentiated leukemic neutrophils with mIDH2 in 3

patientswho achievedCR (supplemental Table 4). In each case,mutant
neutrophils demonstrated intact phagocytic activity consistent with
restoration of normal granulocyte function (Figure 3D).

Genomic predictors of response to mIDH2 inhibition

We assessed whether additional somatic mutations were associated
with differential response by performing capture-based NGS with
FoundationOneHememutational panel in 100patients at screening.No
overt biases in response, age, sex, prior treatments, bone marrow blast
percentage, absolute neutrophil counts, or prior myelodysplastic
syndrome diagnosis were observed between these patients and the
176 rrAML patients from the phase 1 portion of study AG-221-C-001
(supplemental Table 1). Ninety-eight percent of samples contained
mutations other thanmIDH2, and 17 co-occurring genemutationswere
found in $5% of patients (Figure 4A-B). The most frequent co-
occurring mutations were in serine/arginine-rich splicing factor 2
(SRSF2) (45%), DNA methyltransferase 3 alpha (DNMT3A) (42%),
additional sex combs like 1 (ASXL1) (27%), runt-related transcription
factor 1 (RUNX1) (24%), NRAS (17%), and BCOR (15%). Notably,
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the prevalence of mutations in this cohort differed from an analysis of
1376 de novo AML samples from Papaemmanuil et al (supplemental
Figure 6A-B).13 Our cohort included a significant enrichment of
adverse risk mutations (DNMT3A, ASXL1, RUNX1). Statistical
significance of ASXL1 and RUNX1 enrichment was also upheld when
restricted to the 130 mIDH2-positive patients in the Papaemmanuil
dataset.13 A significantly lower level of favorable prognosis mutations
(NPM1), as defined by Grimwade et al, were also observed.26 Dif-
ferences in co-occurringmutations inpatientswithR140mIDH2AML,
including increased comutational heterogeneity (60 different mutated
genes vs 24 in R172 mIDH2 patients) and number of co-occurring
mutations per patient (3.6 vs 2.6 mutations per patient in R172
mIDH2; P 5 .020) were observed (Figure 4A; supplemental
Figure 6C-E). Additionally, some mutated genes were either
exclusively observed (SRSF2, n 5 45) or more prevalent in R140
mIDH2 rrAML (RUNX1, 27.3% vs 14.3% in R172mIDH2 rrAML)
or more prevalent in R172 mIDH2 rrAML (DNMT3A, 66.7% vs
36.4% in R140 mIDH2). These data extend work on de novo AML
by showing that R140 and R172 mIDH2 rrAML are genetically
distinct leukemia subtypes.13

Additionally, cytogenetics were overlaid with mutational data to
characterize the cohort by 4 different risk classifications of de novo

AML.13,26-28 Using the European LeukemiaNet (ELN) classification
from 2010, 14% of patients were classified as favorable risk and 59%
were classified as intermediate risk (Figure 4C).27,29 Using the recently
revised ELN classification from 2017, which includes ASXL1 and
RUNX1 mutations in the adverse risk group, a disproportionally large
group of patients (56%) were classified as adverse risk.28 Furthermore,
a classification scheme by Grimwade et al, which includes DNMT3A
mutations in the adverse risk group, showed an even greater
enrichment of adverse risk patients (73%).26 Finally, a classifier
developed on a de novo AML cohort13 revealed an enrichment of
patients with mutations in splicing/chromatin associated genes
(43%) andwith TP53mutations or aneuploidy (29%). Only 14% of
patients were categorized as NPM1 mutation-associated AML,
whichwas reported as the largestAMLsubset in the study (Figure 4D).
Importantly, clinical responses to enasidenib were observed across the
risk spectrum in the 72 efficacy-evaluable patients with full genomic/
cytogenetic data (Table 1).

Finally, we investigated whether the number of co-occurring mu-
tations or specific mutant alleles correlated with enasidenib response.
Patients who achieved a response ($PR or CR) had significantly fewer
co-occurringmutations than did nonresponders (P, .001; Figure 5A).
Segregating patients in 3 tertiles (#3, 3 to 6, and $6 comutations)

A

80 17 10 25 13 49 19

60

40

20

BM
0

PB BMPB BMPB

m
ID

H2
 V

AF

CR NRR

mIDH2 VAF at Screening
vs Response

R140 R172

CR

Responder

Non-Responder

0

25
mIDH2 VAF Change from Screening to Best Response

-25

Ab
so

lu
te

 c
ha

ng
e 

in
 V

AF

-50

B

100

100

80

80

60

60

40

40

20

20
0

0

m
ID

H2
 V

AF
 %

% blast by flow

Blast % vs VAF: Pre-Rx and CR

Pre-Rx

CR/ CRi/ CRp/ MLFS

Blast%: mIDH2 VAF = 2:1

DC
50

30

20

10

200
0

0 400 600

40

m
ID

H
2 

VA
F 

(%
)

Days

Patients Achieving Molecular Remission

104-016

109-012

109-013

110-006

110-013

111-034

201-022

900-006

900-014

Figure 2. Clinical responses to mIDH2 inhibition do not correlate with mIDH2 allele burden. (A) Dot plot of mIDH2 VAF (R140 mIDH2 in blue and R172 mIDH2 in red) in

patient samples measured at screening in either peripheral blood or bone marrow by FoundationOne Heme panel. Measurements are separated by the best response

achieved by patients, as defined in Figure 1. Numbers indicate the number of patient samples in the graph. (B) Waterfall plot indicating absolute change in mIDH2 VAF from

screening to achievement of best response measured by Sysmex OncoBeam digital PCR. Responders are plotted in green and nonresponders in red. Patients achieving CR

are outlined in black. The dotted line indicates the largest VAF decrease observed in a nonresponder. (C) Line graph of mIDH2 VAF over time (days of treatment) in 9 patients

achieving molecular remission (undetectable mIDH2) for at least 1 time point during treatment. (D) Scatter plot of bone marrow mIDH2 VAF versus blast percentage measured

by flow cytometry in 9 responsive patients in samples taken pretreatment (red) and at response (CR, CRi, CRp, or MLFS; green). Blue line indicates expected ratio (2:1)

between blast percentage:mIDH2 VAF in clonal mIDH2 disease. Three data points (in green) are superimposed with values close to or at zero. BM, bone marrow; PB,

peripheral blood; pre-Rx, pretreatment.

736 AMATANGELO et al BLOOD, 10 AUGUST 2017 x VOLUME 130, NUMBER 6

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/130/6/732/1405048/blood779447.pdf by guest on 03 N

ovem
ber 2020



A

CD34

CD
11

7

Immature
progenitor
3.6%

Precursor
36.1%

Mature
myeloid
60.3%

Normal bone marrow
Live TNC doublet ex Lin-

102

102

103

104

105

103 104 105 102

102

103

104

105

103 104 105 102

102

103

104

105

103 104 105 102

102

103

104

105

103 104 105 102

102

103

104

105

103 104 105

10
4-

00
1

10
4-

00
3

10
4-

01
0

10
4-

01
1

10
4-

01
8

10
4-

03
0

10
3-

03
1

0

20

40

60

m
ID

H2
 V

AF
 %

Pre
Post (Gran)

0

20

40

60

ID
H2

DNM
T3A

RUNX1

ASXL1

BRCA2

VA
F 

%

104-018

Pre
Post (Gran)

ID
H2

U2A
F1

ASXL1

ARID
1B

104-010

VA
F 

%

Pre
Post (Gran)

0

20

40

60

CB
Immature progenitor: Mature myeloid

VAF Mature
VAF Total

normal C1D15 CR Relapse

201-010

pre CR Relapse

201-011

pre CR

201-023

pre CR

203-002

pre PR

104-036

Myeloid precursor: Mature myeloid

Im
m

at
ur

e:
 m

at
ur

e 
ra

tio

0.01

0.1

1

10

100

m
ID

H2
 V

AF
 %

0
10
20
30
40
50
60
70
80

D

he
alt

hy
 d

on
or

20
1-

01
3

20
1-

00
8

20
1-

02
3

0

40

40

60

80

100

%
 la

te
x 

be
ad

-c
on

ta
in

in
g 

ne
ut

ro
ph

ils

9.0

0.9 5.3

91.2

2.9
96.1

2.8

1.088.3

Pre C5D1: CR Relapse
Live TNC Lin- Live TNC Lin- Live TNC Lin-

Differentiation

Responder

83.6

6.1

8.823.8

63.2

9.6

Pre C17D1:PD
Live TNC Lin- Live TNC Lin-

Non-responder

CD34

CD
11

7

CD34
CD

11
7

Figure 3. Clinical response to mIDH2 inhibition is associated with induction of myeloid differentiation. (A) Representative immunophenotypic analyses by flow

cytometry on sequential bone marrow samples. Cell-surface markers studied are shown. Data from a responding patient (pretreatment to CR to relapse) (left). Data from a

nonresponding patient (pretreatment to progressive disease) who remained in stable disease during treatment (right). Numbers in FACS plots refer to the size of the

population as a percentage of lineage-negative bone marrow mononuclear cells. For normal bone marrow (n 5 12), the standard deviation is 62.7% for immature progenitor,

69.6% for immature precursors, and 69.7% for mature myeloid cells. (B) Graph showing ratio of immature to mature cell populations by flow cytometry from bone marrow

over time (top): the average ratios of myeloid progenitor or myeloid precursors to mature myeloid cells in bone marrow from normal donors (n 5 12) and 5 patients who had

either a CR or a PR with enasidenib are shown. In patient 201-010, the changing size of myeloid precursor (red) cell populations in relation to mature myeloid cells is shown. In

the remaining 3 patients, the changing size of myeloid progenitor (blue) populations to mature cells is shown. Colored bars represent the 95% confidence intervals in normal

controls. The mIDH2 VAF in each patient at different time points in all bone marrow mononuclear cells (VAF total) and in FACS-sorted mature myeloid cells (CD342CD1172)

are shown (bottom). (C) mIDH2 VAF in bone marrow mononuclear cells prior to treatment (blue) and in sorted peripheral blood neutrophils at time of best response (red) in 7

patients achieving CR (top). VAF of indicated mutation in bone marrow mononuclear cells prior to treatment and in sorted peripheral blood neutrophils at time of best response

in 2 patients achieving CR (middle and bottom). (D) Histogram of the percentages of functional neutrophils observed in ex vivo enasidenib-treated patient samples (left) and

representative images (right) assessed by phagocytic assay quantifying neutrophils (blue) that contained latex beads (green). The percentage of neutrophils containing beads

was measured by scoring 5 different fields of view per sample. BRCA2, breast cancer type 2; Gran, granulocyte; PD, progressive disease; Post, time of best response; Pre,

prior to treatment; TNC, total nucleated cell count.

BLOOD, 10 AUGUST 2017 x VOLUME 130, NUMBER 6 ENASIDENIB INDUCES CELL DIFFERENTIATION IN R/R AML 737

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/130/6/732/1405048/blood779447.pdf by guest on 03 N

ovem
ber 2020



IDHR172

TP53/Anueploidy

CEBPA

inv(3)

Splice/Chromatin

Other

NPM1

MLL

43%

29%

3%

3%
6%

1%

1%
14%

Papaemmanuil Class

D

A

SRSF2
DNMT3A

ASXL1
RUNX1

NRAS
BCOR
NPM1

KMT2A
FLT3

STAG2

PHF6
CEBPA

KRAS

PTPN11

ZRSR2

EZH2

IDH1
JAK2

TET2

WT1

ATM

SETBP1

TP53

BCORL1

CBL

CUX1
ETV6

GATA2

SF3B1

U2AF1

10
3-

01
0

10
9-

00
2

10
9-

00
3

20
1-

02
3

11
0-

00
6

10
4-

02
4

90
0-

00
6

10
2-

00
5

10
4-

00
3

11
1-

01
3

11
0-

00
1

10
4-

01
6

20
1-

00
2

20
1-

02
2

20
1-

00
1

20
1-

01
4

20
1-

01
9

20
1-

02
7

20
1-

01
6

10
8-

00
2

20
1-

00
9

10
4-

02
8

20
1-

00
8

10
5-

00
9

11
1-

00
7

20
1-

01
8

10
8-

00
1

10
4-

02
6

11
1-

01
7

11
0-

00
4

20
1-

00
7

11
1-

01
1

10
1-

00
4

11
1-

02
6

10
4-

02
3

10
4-

00
9

90
0-

00
2

11
1-

01
2

10
4-

03
2

11
1-

00
4

10
4-

01
8

11
1-

02
0

10
7-

00
1

90
0-

00
8

90
0-

00
3

20
1-

01
7

20
1-

00
4

10
5-

00
7

10
3-

00
4

11
1-

02
2

90
0-

00
4

10
9-

01
1

11
1-

02
4

11
1-

02
5

20
1-

00
5

10
4-

00
2

90
0-

00
1

10
2-

00
2

11
1-

01
5

10
9-

00
8

10
9-

00
9

11
0-

00
2

10
4-

01
4

10
4-

02
2

10
1-

00
1

10
4-

02
5

10
4-

03
0

10
5-

00
2

10
9-

00
1

10
3-

01
2

10
4-

00
8

11
1-

00
9

10
5-

00
1

C
R

C
R

i

C
R

p

M
LF

S

P
R

S
D

P
D

mIDH2 R140

10
7-

00
4

20
1-

01
0

10
6-

00
2

20
1-

01
1

10
2-

00
4

10
1-

00
3

10
4-

00
5

20
1-

00
3

20
1-

01
2

20
1-

01
3

10
4-

02
1

10
4-

03
1

10
4-

01
3

11
1-

01
0

11
1-

00
5

20
1-

02
1

10
7-

00
3

11
1-

02
3

10
1-

00
5

C
R

C
R

i
M

LF
S

P
R

S
D

mIDH2 R172

Favorable

Intermediate

Adverse

10%

17%

73%

Grimwade Risk

Favorable

Intermediate

Adverse

13%

31%56%

ELN 2017 Risk

Favorable

Intermediate-I

Intermediate-II

Adverse

27%
14%

24%

35%

ELN 2010 Risk

C

Best.Response NA NR R

0

25

50

75

# 
pa

tie
nt

s

100

ID
H

2
S

R
S

F
2

D
N

M
T

3A
A

S
X

L1
R

U
N

X
1

N
R

A
S

B
C

O
R

N
P

M
1

K
M

T
2A

F
LT

3
S

T
A

G
2

P
H

F
6

C
E

B
P

A
K

R
A

S
P

T
P

N
11

Z
R

S
R

2
E

Z
H

2
ID

H
1

JA
K

2
T

E
T

2
W

T
1

A
T

M
S

E
T

B
P

1
T

P
53

B
C

O
R

L1
C

B
L

C
U

X
1

E
T

V
6

G
A

T
A

2
S

F
3B

1
U

2A
F

1
B

A
C

H
1

B
C

L6
C

A
D

C
A

S
P

8
C

C
N

D
2

C
D

36
C

P
S

1
D

D
X

3X
F

A
N

C
A

F
B

X
W

7
H

IS
T

1H
2B

J
H

IS
T

1H
2B

K
IC

K
JA

R
ID

2
JA

Z
F

1
K

D
M

6A K
IT

M
A

P
3K

13
M

E
C

O
M

M
K

I6
7

M
LL

3
M

P
L

M
U

T
Y

H
M

Y
C

N
N

C
O

R
2

N
F

1
N

O
T

C
H

1
N

U
P

98

P
B

R
M

1
P

IK
3R

1
R

O
S

1
T

B
L1

X
R

1
T

P
63

T
S

C
2

X
P

O
1

P
A

S
K

Histogram of known/likely variants per gene (absolute number of patients with variant(s) in gene)

B
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revealed a significant difference in ORR for patients with the
most versus least co-occurring mutations (ORR 21.9% vs 70.4%,
respectively; P, .001) (Figure 5B). Analysis of comutated genes with
response indicated a lower, but statistically nonsignificant, ORR with
co-occurring SRSF2 (34%), ASXL1 (39%), RUNX1 (26%), and NRAS
(19%) mutations (supplemental Table 5). However, significantly fewer
patients with co-occurring NRAS mutations achieved CR (P 5 .0114;
supplemental Table 5). When the most common mutations known to
activate NRAS signaling (G12, G13, or Q61) were analyzed in
comparison with ORR, the observed decrease in response rate was
statistically significant (P 5 .002; Figure 5C). Notably, overall
mutational burden was significantly higher (P , .001) in patients
with mNRAS (G12, G13, or Q61), and mutations in NRAS were
frequently subclonal (Figure 5D-E). Analysis of other gene
mutations involved in activating MAPK signaling revealed that
no patients with mPTPN11 responded and that mutant Kirsten rat
sarcoma (mKRAS) was not associated with response (supplemen-
tal Table 5). Together, these data suggest that some RAS pathway
mutations, either in the dominant or minor subclone, may directly
or indirectly attenuate responses to mIDH2 inhibition.

Discussion

Our study of mIDH2 rrAML patient samples from the phase 1 trial
of enasidenib indicates that this cohort is enriched for mutations
more commonly seen in adverse-risk or secondary AML (eg,
SRSF2, RUNX1, and ASXL1). Additionally, these studies extend
previous observations in de novo R140 and R172 mIDH2 AML,
confirming that the 2 mIDH2 subtypes are genetically distinct.
Despite these observations, enasidenib exhibited potent target
inhibition in both subtypes and an ORR of ;40% with no
statistical difference between R140 and R172 mIDH2 rrAML.18

Additionally, our data confirm the preclinical mechanism of action
of mIDH2 inhibition by enasidenib and provide the first insight
into the genetic basis of primary resistance.10,14-16

Evidence suggests that human AML comprises a hierarchy of both
tumor-propagating leukemic stem cells (LSCs) arrested at a progen-
itor or precursor stage of hemopoiesis and more mature nontumor
propagating leukemic cells.30,31 Our observations demonstrate that
enasidenib promotes terminal differentiation of mIDH2 leukemic cells
of granulocytic lineage in patientswho achieveCRorPR.Furthermore,
we observed ex vivo phagocytic function in differentiated mIDH2-
containing neutrophils. These observations are clinically important and
may explain the lower frequency of infections in patients achieving CR
with enasidenib treatment.32 Our studies also demonstrate decreases

in mIDH2 below a detectable limit in a subgroup of patients. Both
observations support differentiation as the mechanism of action
of enasidenib monotherapy. Where mIDH2 cells persist, it is most
plausible that mIDH2 LSCs are not eradicated but differentiate to give
rise to mIDH2-containing functional neutrophils. When molecular
CR is achieved, mIDH2 inhibition may result in terminal or near-
terminal exhaustion through differentiation of the mIDH2 clone.
The differential effects may be due to the specific cellular and
genetic contexts of the IDH2mutation, and additional work will be
required to dissect the mechanisms accounting for these observa-
tions. It is also intriguing and unclear how CR is achieved in the
context of subclonal mIDH2; this requires further mechanistic
studies of cell autonomous and cell nonautonomous effects of
IDH2 mutations in AML.

In this study, we measured total 2-HG, which includes both L-2-
HG and R-2-HG, whereas only R-2-HG is produced by neomorphic
IDH mutations. It has been shown that total 2-HG levels correlate
with R-2-HG, mIDH2 allelic burden, tumor mass, and clinical
status (ie, CR vs absence of CR), consistent with the majority of
2-HG being derived from mIDH2 production of R-2-HG.4 When
total 2-HG levels are low,measurement ofR-2-HG, rather than total
2-HG, may improve sensitivity; however, this would not have
changed our observations relating to the consistent, dose-dependent
suppression of 2-HG seen in nearly all patients. Previously, serum
2-HG levels have been suggested as a biomarker for chemotherapy
response in mIDH2-positive patients.1-4 Our data demonstrate that
this is not the case in targeted therapy because enasidenib is able to
inhibit themIDH2 enzyme and suppress 2-HG regardless of clinical
response. Consistent with this hypothesis the level of suppression
of 2-HG is not prognostic of response. We also observed that in
R172 mIDH2 patients, although the extent of 2-HG suppression is
more variable and maximal suppression takes longer to achieve,
clinical responses were equivalent to the R140 mIDH2 subtype.
Paradoxically, in 4 R172 patients, 2-HG levels rose on enasidenib
therapy. This anomaly could arise from differential production of
2-HG by different cell populations during enasidenib-induced
differentiation, specific comutational patterns, or alterations in
AML cell metabolism in these patients not seen in the larger
cohort. Nevertheless, collectively, these data demonstrate that
enasidenib potently suppresses 2-HG, the extent of 2-HG
suppression does not predict clinical response, and primary
resistance to enasidenib is not due to an inability to suppress
mIDH2 enzyme activity.

These data also suggest that other factors determine clinical
response to enasidenib. Patients with a higher mutational burden or
co-occurring mutations in the RAS pathway were observed to be less
likely to respond to mIDH2 inhibition. The observation that increasing

Table 1. Analysis of response in patients with favorable, intermediate, and adverse-risk rrAML

Risk
assessment

ORR/CR,
favorable risk profile, % (n)

ORR/CR,
intermediate risk (I 1 II) profile, % (n)

ORR/CR,
adverse risk profile, % (n)

P value
(ORR/CR)†

Risk classification

ELN 2010 22.2/0 (9) 55.8/32.6 (43) 30.0/10.0 (20) .7322/.8493

ELN 2017 37.5/0 (8) 65.2/43.5 (23) 34.1/14.6 (41) .2049/.5816

Grimwade 33.3/0 (6) 66.7/58.3 (12) 40.7/16.7 (54) .6121/.4487

Molecular classification

Papaemmanuil* 80.0/60.0 (5) 36.4/9.0 (11) 42.8/21.4 (56) .4631/.2605

ORR (CR, CRi, CRp, MLFS, and PR) by risk assessment is based on cytogenetic testing, and mutations are identified by FoundationOne Heme panel according

to ELN 2010,29 ELN 2017,28 Grimwade et al,26 and Papaemmanuil et al.13

*Papaemmanuil risk was inferred from survival analysis of molecular classifications in which the mCEBPA and mIDH2-R172 groups were considered favorable; mNPM1

and others were considered intermediate; and chromosome 3 inversion, Chromatin-Spliceosome, MLL fusions, and mTP53-aneuploidy were considered adverse.

†P values were for the contingency test for the logical trend from favorable to adverse risk.
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number of driver mutations is associated with poorer outcome with
mIDH2 inhibitor therapy mirrors similar observations in newly diag-
nosed AML patients treated with chemotherapy.13 From these data, it is
also unclear whether constitutive activation of the RAS pathway
imposes a 2-HG-independent differentiation block or whether muta-
tions in RAS and other signaling pathways are a marker of overall
higher mutational burden and other mechanisms of 2-HG-independent
differentiation arrest. Notably, NRAS mutations were frequently
present in a minor subclone, and this intriguing observation requires
further investigation.

Although enasidenib responses are clinically durable, the genetic
heterogeneity observed in our patients suggests that combination with
other therapies may be required to achieve long-term disease remission
in more patients. This is reminiscent of the impressive, but not durable,
activity of all-trans-retinoic acid monotherapy in acute promyelocytic
leukemia.33 Our data suggest that targeted therapies may optimally be
delivered in combination with other therapies. Current clinical studies
combining enasidenib with combination chemotherapy or azacitidine
(NCT02677922 and NCT02632708) and future orthogonal targeted
therapies will address this question. Although this is only a subgroup
analysis of a large single-arm experience, taken together, the clinical
response and translational data demonstrate that single-agent mIDH2
inhibition by enasidenib in rrAML represents a critical and novel dif-
ferentiation therapy. It also provides the platform for future combination

therapy regimens to optimize clinical response and further improve
outcomes in mIDH2 AML.
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