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Tissue-resident memory CD8+ T (TRM) cells are found at common 
sites of pathogen exposure, where they elicit rapid and robust 
protective immune responses1,2. However, the molecular signals 
that control TRM cell differentiation and homeostasis are not fully 
understood. Here we show that mouse TRM precursor cells represent 
a unique CD8+ T cell subset that is distinct from the precursors of 
circulating memory cell populations at the levels of gene expression 
and chromatin accessibility. Using computational and pooled 
in vivo RNA interference screens, we identify the transcription 
factor Runx3 as a key regulator of TRM cell differentiation and 
homeostasis. Runx3 was required to establish TRM cell populations 
in diverse tissue environments, and supported the expression of 
crucial tissue-residency genes while suppressing genes associated 
with tissue egress and recirculation. Furthermore, we show that 
human and mouse tumour-infiltrating lymphocytes share a core 
tissue-residency gene-expression signature with TRM cells that is 
associated with Runx3 activity. In a mouse model of adoptive T cell 
therapy for melanoma, Runx3-deficient CD8+ tumour-infiltrating 
lymphocytes failed to accumulate in tumours, resulting in greater 
rates of tumour growth and mortality. Conversely, overexpression of 
Runx3 enhanced tumour-specific CD8+ T cell abundance, delayed 
tumour growth, and prolonged survival. In addition to establishing 
Runx3 as a central regulator of TRM cell differentiation, these results 
provide insight into the signals that promote T cell residency in non-
lymphoid sites, which could be used to enhance vaccine efficacy or 
adoptive cell therapy treatments that target cancer.

Long-lived memory T cells provide protection from reinfection and 
can serve as endogenous defenders against tumour growth3. Memory 
CD8+ T cell populations can be broadly segregated into circulating cen-
tral memory (TCM) and effector memory (TEM) T cells as well as tissue- 
resident memory (TRM) T cells that primarily reside in non- lymphoid 
tissues without egress4. Circulating memory CD8+ T cells and TRM cells 
exhibit distinct gene-expression profiles5–7; however, the early transcrip-
tional identity of differentiating TRM cells and the signals controlling 
their fate are not yet fully appreciated. Here, we used an esta blished 
infection model with P14 T cell receptor transgenic CD8+ T cells  
responsive to the lymphocytic choriomeningitis virus (LCMV)  
glycoprotein 33–41 peptide (GP33–41) presented by major histocompati -
bility complex (MHC) class I H-2Db. In this acute infection model, 
adoptively transferred P14 cells located in non-lymphoid tissues 
on day 7 of infection began to upregulate molecules characteristic 
of TRM cells8, including key  tissue-retention molecules CD103 and 
CD69 (Extended Data Fig. 1a). Gene expression analysis revealed that 
90–96% of the genes upregulated in mature P14 TRM cells in the kidney 
parenchyma or intraepithelial lymphocyte (IEL) compartment of the 
small intestine were increased in TRM precursor cells relative to splenic 
effector cells on day 7 of infection (Fig. 1a). Furthermore, analysis of 

genes differentially expressed between splenic and non-lymphoid 
 populations on day 7 of infection revealed two distinct gene expres-
sion programs that segregated circulating (peripheral blood lympho-
cytes, spleen, TCM and TEM) from non-lymphoid (kidney and IELs) 
P14 cells,  independent of the infection time point (Fig. 1b). Lymph 
node or splenic KLRG1loCD127hi memory precursor cells preferentially 
give rise to circulating memory populations, whereas  shorter-lived 
KLRG1hiCD127lo terminal effector cells exhibit less memory  potential3. 
Day 7 IEL P14 cells comprising the precursors of TRM cells were tran-
scriptionally distinct from splenic memory precursor cells (Fig. 1c). 
This is notable, as IEL TRM cells are predominantly KLRG1lo (ref. 9) and 
preferentially differentiate from lymphoid-derived KLRG1lo precursors 
seeding non-lymphoid tissues on days 4.5–7 of infection10 (Extended 
Data Fig. 1a–c), consistent with studies of skin TRM cells5. Thus, the TRM 
precursor cell populations in non-lymphoid tissues are transcription-
ally distinct from circulating effector cells as well as memory precursor 
cells on day 7 of infection, and most of the TRM cell transcriptional 
program is already established at this time point, before contraction of 
the CD8+ T cell population.

As chromatin accessibility is a key determinant of cell identity and 
fate, we profiled non-lymphoid and splenic effector populations using 
an assay for transposase-accessible chromatin with high-throughput 
 sequencing (ATAC–seq) on day 7 of infection. Uniquely accessible 
chromatin regions were identified in IEL P14 cells near genes character-
istically expressed in mature TRM cells (for example, Cd69 and Nr4a1), 
whereas genes that promote T cell re-circulation (for example, Klf2 
and S1pr1) exhibited loss of accessible regions (Extended Data Fig. 2a).  
Principal component analysis (PCA) highlighted that, despite day 7 
being an ‘effector’ time point, the global chromatin landscape markedly 
differs between  effector CD8+ T cells located in the spleen, including 
memory  precursor cells, and those located in non-lymphoid tissues 
(Fig. 1d). The unique chromatin configuration of differentiating TRM 
cells is consistent with the notable transcriptional differences observed 
(Fig. 1a–c) and foresha dows the distinct fates of antigen-specific cells 
in the spleen relative to non-lymphoid tissues. Thus, precursors of TRM 
cells in non-lymphoid sites are a unique and distinct CD8+ T cell subset 
relative to effector cells in the lymphoid compartment, including the 
memory precursor cell population.

Specification of CD8+ T cell fate during infection is dependent on 
the integrated activity of multiple transcription factors3; regulators of 
TRM cell formation include Hobit6, Blimp16, Nr4a111, Eomes12 and 
T-bet12,13. To facilitate a broader understanding of the transcriptional 
network driving TRM cell differentiation, we used a combined screening 
approach, consisting of a computational strategy integrating ATAC–
seq data, transcriptional profiling and personalized PageRank analysis 
to predict regulatory transcription factors, and a pooled in vivo RNA 
interference (RNAi) loss-of-function screen targeting putative TRM cell 
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regulators identified through the computational approach (Fig. 1e).  
We recently demonstrated that analysis of accessible transcription 
factor-binding motifs and target gene expression yielded insight into 
factors with regulatory functions in the differentiation of circulating 
memory CD8+ T cells14. Using this approach and the personalized 
PageRank analysis15, we predicted several transcription factors with 
established regulatory roles in controlling TRM cell differentiation 
(such as Blimp16, Nr4a111, Eomes12 and T-bet12,13) and many with no 

previously described role in TRM cells (Fig. 1f, Supplementary Table 1).  
We evaluated both barrier (IEL) and non-barrier (kidney) TRM cells 
to reveal transcription factors important to TRM cell differentiation 
independent of the tissue. In addition, a key strength of this com-
putational screen is that influential roles of differentially expressed 
transcription factors as well as those with homogenous expression 
can be anticipated (Extended Data Fig. 2b). To establish functional 
relevance for predicted regulators of TRM cell formation identified 

Figure 1 | Computational and loss-of-function RNAi screens 
identify transcriptional regulators of TRM cell differentiation. a, Top, 
comparison of gene expression of IELs (left) and kidney TRM cells (right) 
relative to TCM and TEM subsets on day 35 of LCMV infection. Red denotes 
genes increased in TRM relative to TCM and TEM cells; blue denotes genes 
increased in TCM and TEM relative to TRM cells. Bottom, comparison of 
differentially expressed genes in mature TRM cells (from top panel) in cells 
from the spleen, IELs or kidney on day 7 of infection. b, Differentially 
expressed genes between splenic, IEL and kidney populations on day 7 
of infection were compared among effector and memory CD8+ T cell 
subsets. Populations are ordered by hierarchical clustering with Pearson 
correlation. c, PCA of differentially expressed genes among day 7 subsets 
and naive P14 cells. MP, memory precursors; TE, terminal effectors. 

d, PCA of differential global chromatin accessibility of subsets on 
day 7 of infection identified by ATAC–seq analysis. e, Combinatorial 
screening approach. TF, transcription factors. f, Transcription factors 
with a PageRank score of ≥ 1.5-fold change for day 7 non-lymphoid cells 
compared to day 7 splenic cells are included in the heat map; proteins 
known to regulate TRM cell formation are in bold font. g, Enrichment of 
shRNAmir constructs in IEL TRM cells relative to splenic TCM cells from 
the RNAi screen, reported as the average Z-score from 3 independent 
screens, in which each independent screen was performed by pooling 
DNA from sorted P14 cells from n =  15, n =  18 and n =  18 mice. Each time 
point represents an individual experiment consisting of 2–3 biological 
replicates, in which cells from 2–10 mice were pooled for each  
replicate (a–d).
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through PageRank analysis, we used an RNAi screening strategy16 
to test hundreds of individual microRNA-based short hairpin RNA 
(shRNAmir) constructs in parallel for the ability to promote or repress 
TRM cell differentiation in vivo (Fig. 1g, Supplementary Table 2).  
Several transcription factors with established roles in regulating TRM 
cells were identified (such as Nr4a113, Blimp16, Klf217 and T-bet12,13), as 
well as factors with previously unknown functions in controlling CD8+ 
TRM formation such as Nr4a3 and Runx3 (Fig. 1g).

Runx3 is a well-established regulator of CD8+ T cell thymo-
cyte development18, supports cytotoxic activity of mature CD8+  
T cells19,20, and controls CD4+ T cell localization within the intestinal 
epithelium21. Although little is known regarding a role for Runx3 in 
CD8+ TRM cells, both computational and functional screens identified 
Runx3 as a putative regulator of TRM cell fate specification (Fig. 1f, g)  
despite relatively uniform Runx3 expression in circulating and  resident 
CD8+ T cell subsets (Extended Data Figs 2b, 3a). We validated a role 
for Runx3 through a 1:1 mixed transfer of P14 cells transduced with 
control (Cd19 shRNAmir) or Runx3 shRNAmir-encoding  retroviruses 
into mice that were subsequently infected with LCMV (Fig. 2a). Runx3 
shRNAmir suppressed Runx3 expression (Extended Data Fig. 3b)  
and impaired the formation of IEL TRM cells relative to circulating cells 
(Fig. 2a and Extended Data Fig. 3c, d), consistent with the RNAi screen. 
Furthermore, Runx3 RNAi also impaired TRM cell differentiation in 
the context of a  localized enteric infection with Listeria monocytogenes 
expressing GP33–41 (LM–GP33–41) (Fig. 2b).

Next, using a tamoxifen-inducible deletion approach, Runx3fl/fl Ert2-
Cre+ P14 (Runx3fl/fl) or Runx3+/+ Ert2-Cre+ P14 (Runx3+/+) cells were 
mixed 1:1 and transferred into host mice followed by LCMV or enteric 
LM–GP33–41 infection (Fig. 2c). Runx3-deficiency resulted in a 2–6-
fold loss of splenocytes and minimal loss of mesenteric lymph node 
cells by day 15/16 of infection. However, Runx3-deficiency resulted in 
a 50–150-fold loss of CD69+CD103+ TRM cells in both infection set-
tings (Fig. 2c and Extended Data Fig. 3e). Moreover, delaying tamoxi-
fen treatment to days 6–8 or 16–20 of infection further emphasized a 
distinct dependence of TRM cell differentiation on Runx3 (Fig. 2d) as 
well as a crucial role for Runx3 in maintaining TRM cell homeostasis 
(Fig. 2e, Extended Data Fig. 3f). Furthermore, Runx3 was necessary 

for optimal TRM cell differentiation of H-2Db GP33–41 tetramer+ cells 
(Extended Data Fig. 4a–d). Taken together, these data demonstrate that 
Runx3 is crucial for TRM cell differentiation and maintenance.
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Figure 2 | Runx3 is essential for the 
differentiation and long-term maintenance 
of CD8+ TRM cells. a, Congenically distinct 
P14 cells were transduced with retroviruses 
encoding Runx3 shRNAmir or a control (ctrl) 
shRNAmir, mixed at a 1:1 ratio, and transferred 
to recipient mice subsequently infected with 
LCMV, and the ratio of transduced cells was 
evaluated on day 23 or 26 in the indicated 
tissues. mLN, mesenteric lymph nodes. 
b, Ratio of transduced transferred cells in 
indicated tissues on day 32 of enteric LM–
GP33–41 infection. o.g., oral gavage. c, Ratio of 
transferred Runx3fl/fl Ert2-Cre+ YFP (Runx3fl/fl)  
to Runx3+/+ Ert2-Cre+ YFP (Runx3+/+) P14 
cells in indicated tissues on days 6/7 and 
15/16 of LCMV infection (top) or enteric 
LM–GP33–41 infection (bottom). d, Ratio of 
Runx3fl/fl to Runx3+/+ P14 cells on day 15 
of LCMV infection. e, Ratio of Runx3fl/fl to 
Runx3+/+ P14 cells on day 35 of infection. Data 
are mean ±  s.e.m of n =  5 (a), n =  3 (b), n =  3 
(day 7) and n =  6 (day 15/16) (c), n =  5 (d), and 
n =  5 (vehicle) and n =  3 (tamoxifen) (e). All 
data are from one representative experiment of 
2 independent experiments, except in a, which 
is pooled from 2 independent experiments.  
* P <  0.05, * * P <  0.01, * * * P <  0.005 (Student’s 
t-test). Symbols represent an individual mouse 
(a–e).

Core residency
signature

Core circulating 
signature

R
es

id
en

cy
 s

ig
na

tu
re

 
C

irc
ul

at
in

g 
si

gn
at

ur
e 

IEL 

Lung

Skin

Brain 

K
id

IEL 

Lung

Skin

Brain 

93

121

**

*

***

*

NS

R
un

x3
-R

V
/G

FP
-R

V

0

20

40

60

80

100

Fr
eq

ue
nc

y

***
***

GFP-RV
Runx3-RV

1–1 0

mLN IEL
CD69+

CD103+ IEL

D8

D13

–0.4
–0.2

0

Runx3fl/flWT

–0.4
–0.2

0

2
4

0
2
4

0

Runx3fl/flWT WTRunx3-RV

WTRunx3-RV

Residency signature 

4654
Runx3

4456

7030

6238 2971

4258

2377

Spleen

C
D

45
.1

CD45.2

6238

GFP-RV Runx3-RV

D8

D13

CD103

C
D

69

IEL

45

15

819

5

23

91

4

165

1

22
NES = –1.91
FDR q = 0

NES = 2.31
FDR q = 0

NES = –2.1
FDR q = 0

NES = 1.91
FDR q = 0

19 45

9165

Day 8 Day 13
0

2

4

6
2.7×

0.9× 1.8×

0.4×

3.8×

D8 D13 D8 D13

*

CD103+ CD69+

Spleen
mLN
IEL
CD69+

CD103+ IEL
E

nr
ic

hm
en

t 
sc

or
e 

Circulating signature 

K
id

Run
x3

fl/
fl

Run
x3

+/
+

Run
x3

-R
V

a

b c

Figure 3 | Runx3 programs CD8+ T cell tissue-residency. a, Congenically 
distinct P14 cells were transduced with retroviruses encoding Runx3-
cDNA (Runx3-RV; CD45.1+ cells) or control GFP (GFP-RV; CD45.1.2+ 
cells), mixed at a 1:1 ratio, and transferred to recipient mice subsequently 
infected with LCMV. Ratios of transduced cells were evaluated on days 8 
and 12/13 of infection. b, Frequency of CD69+ and CD103+ cells from a. 
c, Left, relative expression of the core ‘circulating’ and ‘residency’ genes 
between Runx3-RV, Runx3fl/fl and Runx3+/+ CD8+ T cells. Right, gene set 
enrichment analysis (GSEA). FDR, false discovery rate; NES, normalized 
enrichment score; WT, wild type. Data are mean ±  s.e.m of n =  5 mice  
(a, b) from one representative experiment of 2 independent experiments. 
* P <  0.05, * * P <  0.01, * * * P <  0.005 (Student’s t-test). NS, not significant. 
Symbols represent an individual mouse (a, b).
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Runx3 deletion also resulted in a loss of TRM cells in non-barrier  tissues 
(salivary gland and kidney; Extended Data Fig. 5a, b), and  optimal TRM 
cell differentiation in the skin and lung parenchyma required Runx3 
(Extended Data Fig. 5c–h). Thus, the loss of TRM cells in a range of 
non-lymphoid tissues indicated that Runx3 drives the formation of 
TRM cells independently of the tissue site. Furthermore, Runx3 was 
required for maximal expression of granzyme B in TRM cells, although 
cytokine production was unchanged (Extended Data Fig. 6a, b).  
Runx3-deficiency resulted in a greater frequency of annexin V+ cells 
(Extended Data Fig. 6c, d), most prominently in the CD69+CD103+ 
TRM population; thus, the marked loss of TRM cells was at least in part 
due to a greater rate of apoptosis, as proliferation and trafficking were 
not affected (Extended Data Fig. 6e, f).

We next assessed whether enhanced expression of Runx3 could 
 augment TRM cell differentiation. Overexpression of Runx3 accelerated 
IEL P14 CD69+CD103+ TRM cell differentiation on day 8 of infection, 
but did not affect migration to the small intestine (Fig. 3a). Evidence of 
enhanced TRM cell differentiation was further confirmed by the greater 
abundance of IEL TRM cells on day 12/13 of infection and enhanced 
CD103 expression, consistent with a reported role for Runx3 in regu-
lating CD103 expression21,22 (Fig. 3b). Furthermore, overexpression 
of Runx3 also boosted TRM cell differentiation in the lung parenchyma 
(Extended Data Fig. 7a–d).

Given that manipulation of Runx3 affected TRM cell formation in 
diverse tissue microenvironments, we constructed a core TRM cell 
transcriptional signature by computational integration of CD8+ TRM 
gene-expression datasets from small intestine IELs, kidney, lung5, 
skin5 and brain7, to evaluate the hypothesis that Runx3 is a universal 

regulator of TRM cell specification (Fig. 3c, Supplementary Table 3).  
Notably, we found that most of the core tissue-residency signature genes 
were upregulated in Runx3-overexpressing cells and downregulated 
in Runx3-deficient cells. Conversely, the core signature of circulating 
memory cells was enriched in Runx3-deficient cells and depleted from 
Runx3-overexpressing cells (Fig. 3c). Therefore, Runx3 promoted the 
expression of tissue-residency signature genes and repressed genes char-
acteristic of circulating cells. This conclusion was further corro borated 
by chromatin-immunoprecipitation followed by deep sequencing  
(ChIP–seq) analysis23, indicating that Runx3 binding was enriched in 
both core tissue-residency and circulating genes relative to background 
sites (Extended Data Fig. 8a).

Through evaluation of accessible Runx3-binding motifs from 
ATAC–seq analysis, we generated a regulatory Runx3-binding network 
(Extended Data Fig. 8b) and found that Runx3 putatively regulates a 
distinct network of genes in differentiating IEL-TRM precursor cells 
relative to splenic effector cells, including selective enrichment of genes 
linked to cell adhesion and regulation of transcription factor activity. 
In connection, Runx3 has been shown to cooperate with the transcrip-
tion factor T-bet in many contexts19,24, yet T-bet is a potent suppressor 
of early TRM cell differentiation12,13. ChIP–seq data23 indicated that 
Runx3 directly binds to multiple sites of the Tbx21 locus (encoding 
T-bet; Extended Data Fig. 8c), and Runx3-deficient CD8+ T cells 
exhibited increased T-bet levels (Extended Data Fig. 8d). Tbx21 RNAi 
in Runx3-deficient cells enhanced TRM cell numbers in the IEL com-
partment and restored CD103 and CD69 expression (Extended Data  
Fig. 8e, f), but did not fully rescue TRM cell differentiation. These 
 findings are consistent with Runx3 regulating multiple targets that 
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Figure 4 | CD8+ TILs share transcriptional signatures with TRM cells  
and require Runx3 for tumour residency. a, Comparison of the core 
tissue-residency signature and core circulating signature (from  
Fig. 3c) in B16 melanoma CD8+ TILs27 or PyMT mammary tumour CD8+ 
TILs27 relative to corresponding splenic cells. b, PCA of gene expression  
of the core tissue-residency and circulating gene sets for TILs, TRM cells  
or splenic subsets. c, d, Congenically distinct P14 cells were transduced 
with retroviruses encoding Runx3 shRNAmir or Runx3-RV (CD45.1+ 
cells) and control shRNAmir or GFP-RV (CD45.1.2+ cells), mixed at a 1:1 
ratio and transferred into mice with established B16-GP33–41 melanoma 
tumours. Flow plots and graphs indicate ratio of transduced cells.  
e, Relative expression of the core tissue-residency and core circulating gene 
sets in GFP-RV splenocytes, GFP-RV TILs, and Runx3-RV TILs following 

the same approach as in c. f, g, Tumour growth and survival after adoptive 
transfer of the indicated cell population. A log-rank (Mantel–Cox) test 
was used to compare survival rates. h, GSEA of the core tissue-residency 
signature in Runx3hi versus Runx3lo TIL from single-cell RNA-seq analyses 
of mouse29 and human30 melanoma TILs. Data are mean ±  s.e.m of 
n =  5 (Runx3 shRNAmir) or n =  7 mice per group (Runx3-RV) from one 
representative experiment of 3 independent experiments (c, d) or data 
pooled from 3 independent experiments consisting of n =  21 (no P14), 
n =  20 (control shRNAmir), n =  22 (Runx3 shRNAmir) (f), n =  10  
(no P14), n =  22 (GFP-RV), n =  21 (Runx3-RV) mice per group (g).  
* P <  0.05, * * P <  0.01, * * * P <  0.005 (Student’s t-test). Symbols represent 
an individual mouse (d).
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influence TRM cell formation (Fig. 3c), including suppression of cano-
ni cal genes associated with tissue egress (Extended Data Fig. 8g, h).

It has been noted that CD8+ tumour-infiltrating lymphocytes (TILs) 
can exhibit characteristics of TRM cells, and a positive prognosis has 
been correlated with TILs that present qualities of TRM cells25,26. As 
Runx3 regulates core features of tissue residency (Fig. 3c), we assessed 
the transcriptional similarities of TILs and TRM cells and evaluated a 
role for Runx3 in controlling TIL accumulation. TILs isolated from 
mouse melanoma27 or mammary tumours27 shared approximately 70% 
of the core tissue-residency gene-expression program relative to splenic 
CD8+ T cells (Fig. 4a), and this relationship was further highlighted 
through PCA (Fig. 4b). Utilizing an adoptive therapy model, Runx3-
RNAi or Runx3-overexpressing P14 cells were mixed with control P14 
cells at a 1:1 ratio and transferred into mice with established mela-
noma tumours expressing GP33–41 (Extended Data Fig. 9a). Runx3-
deficiency impaired TIL accumulation (Fig. 4c, d) without affecting 
migration to the tumour (Extended Data Fig. 9b). Alternatively, Runx3-
overexpression enhanced TIL abundance (Fig. 4c, d), expression of 
granzyme B (Extended Data Fig. 9c) and certain core tissue-residency 
genes while further suppressing core circulating genes (Fig. 4e). In clin-
ical settings, TIL density strongly correlates with positive outcomes28, 
and we observed Runx3-deficient P14 cells were impaired in their  
ability to control tumour growth, resulting in greater mortality (Fig. 4f).  
Conversely, Runx3-overexpressing cells delayed tumour growth and 
prolonged survival (Fig. 4g). Notably, human CD8+ TILs also exhibited 
enrichment of the core tissue-residency signature relative to  circulating 
CD8+ T cells25 (Extended Data Fig. 9d), and analysis of single-cell 
RNA sequencing (RNA-seq) data from mouse29 and human mela-
noma TILs30 indicated that activated CD44+CD8+ T cells expressing 
Runx3 exhibited enrichment of the tissue-residency gene-expression 
signature relative to CD44+CD8+ TILs with low Runx3 expression 
levels (Fig. 4h). These data indicate that in both human and mouse 
TILs, tissue-residency features are driven by Runx3. In connection, 
it was recently demonstrated that human lung cancer TILs enriched 
with certain qualities of TRM cells also correlated with TIL abundance 
and a positive prognosis26. Thus, the manipulation of transcription 
factors that promote tissue residency may yield more effective TILs 
and anti-viral memory T cells by supplementing CD8+ T cells with 
a gene-expression program that better supports features important  
to both TRM cells and TILs such as in situ survival, tissue retention, and 
repression of egress, ultimately fostering accumulation of protective  
T cells in tissues.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethODS
Mice. Mice were maintained in specific-pathogen-free conditions in accordance 
with the Institutional Animal Care and Use Committees (IACUC) of the University 
of California, San Diego (UCSD) and The Scripps Research Institute, Jupiter, 
Florida (TSRI-FL). All mice were of a C57BL6/J background and bred at UCSD 
and TSRI-FL or purchased from the Jackson Laboratory, including: wild-type or 
P14 mice with distinct expression of the congenic molecules CD45.1, CD45.2, 
Thy1.1 and Thy1.2 as well as control Thy1.1+Thy1.2+ Runx3+/+ Ert2-Cre+ YFP 
P14 mice and Runx3 inducible deletion Thy1.1+ Runx3fl/fl Ert2-Cre+ YFP P14 
mice. Runx3+/+dLck-Cre+ YFP and Runx3fl/fl dLck-Cre+ YFP mice were used 
for studying polyclonal CD8+ T cell responses. Male and female mice were used 
for experiments, and were age and sex matched, between 1.5 and 4 months old, 
and randomly assigned to experimental groups. The Rosa26 stop-flox enhanced 
yellow fluorescent protein (eYFP) reporter mice were used for all Runx3-deletion 
experiments. Cre-mediated deletion disrupts the Runx3 DNA-binding domain in 
exon 4, which exists in transcripts originating from both the distal and proximal 
promoter. Thus, both long and short Runx3 forms are inactivated in these alleles.
Naive T cell transfers, infection and treatments. Naive P14 CD8+ T cells were 
transferred intravenously into congenically distinct sex-matched recipient mice, 
or female P14 cells were transferred into male mice. For all microarray, RNA-
seq or ATAC–seq experiments, a total of 1 ×  105 P14 cells were transferred. For 
co-transfer experiments, naive Thy1.1+Thy1.2+ Runx3+/+ Ert2-Cre YFP+ P14 
cells and naive Thy1.1+ Runx3fl/fl Ert2-Cre YFP+ P14 cells were mixed 1:1 and a 
total of 3 ×  104 P14 cells were transferred into Thy1.2+ recipient mice. Recipient 
mice were subsequently infected intraperitoneally with 2 ×  105 plaque-forming  
units (PFU) of the Armstrong strain of LCMV or 1010 colony-forming units (CFU) of  
L. monocytogenes expressing GP33–41 via oral gavage9 one day after cell transfer. 
For induced Runx3 deletion, recipient mice were intraperitoneally treated with 
1 mg of tamoxifen diluted in sunflower oil on days 0–4, 2–5 or 6–8 of infection. 
For late deletion of Runx3 (days 16–20), recipient mice were treated with 2 mg of 
tamoxifen via oral gavage.

For TRM precursor experiments, 1 ×  105 P14 cells were transferred, recipient 
mice were infected with LCMV the next day, and KLRG1lo or KLRG1hi P14 cells 
from spleens and lymph nodes were sorted on day 5 of infection. Sorted cells 
(1 ×  105) were transferred into recipient mice infected 4 days previously with 
LCMV. The number of CD62L+ TCM, CD62L− TEM, or IEL TRM cells were evalu-
ated on days 20–25 of infection using flow cytometry.

To distinguish vascular-associated CD8+ T cells in non-lymphoid tissues, 3 μ g  
of CD8α  (53-6.7) conjugated to allophycocyanin (APC) eFlour780 was injected 
intravenously into mice four minutes before euthanization and organ excision. 
CD8α neg cells were considered to be localized within non-lymphoid tissues.
Preparation of cell suspensions. Isolation of CD8+ T cells was performed  
similarly as described31. For isolation of CD8+ T cells from the small intestine IEL 
compartment, Peyer’s patches were removed and the intestine was cut longitudi-
nally and subsequently cut laterally into 0.5–1 cm2 pieces that were then incubated 
with 0.154 mg ml−1 dithioerythritol (DTE) in 10% HBSS/HEPES bicarbonate for 
30 min at 37 °C while stirring. Kidneys, salivary glands, and lungs were cut into 
pieces and digested for 30 min with 100 U ml−1 type I collagenase (Worthington) 
in RPMI 1640, 5% FBS, 2 mM MgCl2, 2 mM CaCl2 at 37 °C while shaking. Skin 
was processed similarly as previously described32, in which a 2 cm2 area of the 
right flank was excised, pre-digested for 30 min at 37 °C and then enzymatically 
digested with 0.7 mg ml−1 collagenase D. After enzymatic incubations (skin, lungs, 
kidneys and salivary glands), tissues were further dissociated over a 70-μ m nylon 
cell strainer (Falcon). For isolation of lymphocytes, single-cell suspensions were 
then separated using a 44/67% Percoll density gradient. Spleens and lymph nodes 
were processed with the frosted ends of microscope slides. Red blood cells were 
lysed with ACK buffer (140 mM NH4Cl and 17 mM Tris-base, pH 7.4).
Antibodies, intracellular staining, flow cytometry and cell sorting. The 
 following antibodies were obtained from eBioscience: CD8α  (53-6.7), CD8β  
(eBio H35-17.2), CD62L (MEL-14), CD127 (A7R34), KLRG1 (2F1), CD103 
(2E7), CD69 (H1.2F3), CD45.1 (A20-1.7), CD45.2 (104), Thy1.1 (OX-7, HIS51), 
Thy1.2 (53-2.1), CCR9 (Ebio CW-1.2), CXCR3 (CXCR3-173), CD49d (R1-2), TNF 
(MP6-XT22), GzB (GB11), PD-1 (J43), Tim3 (RMT3-23), Lag3  (eBioC9B7N), 
KI-67 (SolA15), and IFNγ  (XMG1.2) or from BioLegend: CD62L (MEL-14), 
CD103 (2E7), CD69 (H1.2F3), CD45.1 (A20-1.7), Thy1.1 (OX-7), Thy1.2 (30-H12),  
and T-bet (4B10). For analysis of apoptosis, the Annexin V Apoptosis Detection 
Kit was used per manufacturer instructions (eBioscience); propidium-iodide- 
negative cells were analysed for annexin V staining. The H-2Db GP33–41 tetramer 
was obtained from the NIH Tetramer Core. For intracellular staining of cytokines 
or transcription factors while preserving ametrine or YFP reporter expression in 
transduced or Cre-YFP+ populations, cells were fixed and permeabilized through 
a 10 min incubation with BD cytofix/cytoperm (BD Biosciences). Intracellular 

staining was subsequently performed using the Permeabilization Buffer of the 
Foxp3-Transcription Factor Staining Buffer Set (eBioscience). To assess cytokine 
production, CD8+ T cells were re-stimulated with the GP33–41 peptide in the 
 presence of Protein Transport Inhibitor Cocktail (eBioscience). For flow cytometry 
analysis, all events were acquired on a BD LSRFortessa X-20 or a BD LSRFortessa. 
Cell sorting was performed on BD FACSAria or BD FACSAria Fusion instruments.
RNAi screening approach. We have described this screening approach in detail 
previously16. The targeted shRNAmir library was generated on the basis of key 
genes identified from the computational screening approach as well as genes with 
known roles in regulating TRM cells from literature. The library was produced by 
cloning shERWOOD-designed shRNAmir sequences33, after PCR of synthetic 
97-mer oligonucleotides, into our pLMPd-Amt vector16. Purified DNA from 
sequence- verified clones was used to package retroviral particles in PLAT-E cells. 
The PLAT-E cell line was obtained from Cell Biolabs and were not authenticated or 
tested for mycoplasma contamination before use. For transfections, PLAT-E cells 
were seeded in the middle 60 wells of a 96-well flat-bottom plate at a density of 
4 ×  104–6 ×  104 cells per well one day before transfection. Next, each well was indi-
vidually transfected with 0.2 μ g of DNA from each pLMPd-Amt clone and 0.2 μ g  
of pCL-Eco using TransIT-LT1 (Mirus). Retroviral supernatant was collected 36, 48 
and 60 h after transfection, and retroviral supernatant from each well was used to 
individually transduce in vitro activated P14 cells in 96-well round-bottom plates.

For CD8+ T cell activation in vitro, naive CD8+ T cells from spleen and lymph 
nodes were negatively enriched and 2 ×  105 P14 cells were plated in the middle 60 
wells of 96-well round-bottom plates pre-coated with 100 μ g ml−1 goat anti-hamster  
IgG (H+ L, Thermo Fisher Scientific) and 1 μ g ml−1 anti-CD3 (145-2C11) and  
1 μ g ml−1 anti-CD28 (37.51) (both from eBioscience). Culture medium was 
removed 18 h after activation, and replaced with retroviral supernatant supple-
mented with 50 μ M BME and 8 μ g ml−1 polybrene (Millipore) followed by spin-
fection (60 min centrifu gation at 805g, 37 °C). Two hours after the spinfection, 
the P14 cells were washed three times with cold PBS and 90% of each well of cells 
(individually transduced with distinct retroviral constructs) was collected, pooled 
and 5 ×  105 pooled P14 cells were transferred into recipient mice, which were then 
infected 1 h later with 1.5 ×  105 PFU of LCMV clone 13 intraperitoneally, resulting 
in an acute infection16. The remaining cells in vitro were cultured for an additional 
24 h and either pooled for ‘input’ sequencing (6 ×  105 P14 cells) or were used to 
test transduction efficiency of each construct using flow cytometry to detect the 
percentage of ametrine+ cells in each well.

Twelve days after infection, spleens and small intestines were collected from 
15–18 mice and splenocytes and IEL P14 cells were processed as described above. 
Before sorting, all IEL or splenic samples were pooled. CD62L+ P14 cells (TCM) 
from the spleen as well as P14 cells from the IEL were sorted (2 ×  105–6 ×  105 cells 
total). Genomic DNA was then collected from sorted cells using the FlexiGene 
kit (Qiagen). The integrated proviral passenger strand shRNAmir sequences in 
each cell subset were amplified from 20–100 ng total genomic DNA per reaction, 
with 23–28 cycles of PCR using Ion Proton-compatible barcoded primers that 
anneal to the common 5′  mir30 and shRNAmir loop sequences. Between two 
and three replicate reactions were performed for each genomic DNA sample and 
the replicates were pooled after amplification. The pooled reactions were purified 
using AMPure XP beads, the amplicons in each sample were quantified using a 
Bioanalyzer, and then pooled in a 1:1 molar ratio for sequencing. In each replicate 
of the screen, a minimum of 2.5 million reads per sample were generated and 
retained, after filtering low-quality reads. Reads assigned to each barcode were 
aligned to a reference database of all shRNAmirs in the library using BLAST and a 
custom script to count the top alignment of each read and summarize the number 
of reads aligned to each shRNAmir.

For analysis of shRNAmir representation in TCM cells relative to IEL TRM, the 
total number of reads in each of the samples was normalized, and the number of 
reads for each shRNAmir was scaled proportionally. Subsequently, the normalized  
number of reads in the IEL TRM cells for a given shRNAmir was divided by the 
normalized number of reads for the same shRNAmir in the TCM sample and then 
log2 transformed. The mean and s.d. of the ratios of each of the 25 negative-control  
shRNAmir constructs (targeting Cd19, Cd4, Cd14, Ms4a1, Cd22, Hes1, Klf12, 
Mafb, Plagl1, Pou2af1 and Smarca1) were used to calculate the Z-score for each 
shRNAmir construct. The screen was repeated three times and the Z-score of 
each construct from each individual screen was averaged and plotted (Fig. 1g 
Supplementary Table 2). Certain constructs were added after the first screen or 
were not detectable in one of the screens, but all constructs were successfully 
screened 2–3 times except for 13 constructs, which are marked by an asterisk in 
Supplementary Table 2. Eighty-four per cent (21 out of 25) of all negative control 
shRNAmir constructs had an average Z-score between − 0.9 and 0.9.
CD8+ T cell transduction, cell transfer and infection for individual analysis of 
retroviral constructs. Activation, transfections and transductions were carried out 
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as described for the RNAi screening approach except in some experiments 2 ×  106 
P14 cells were activated per well in 6-well plates. Congenically distinct P14 cells 
transduced with the Runx3.2 shRNAmir or Cd19.1 shRNAmir (control) retrovi-
ruses were mixed 1:1 within 24 h of transduction and a total of 1 ×  105–5 ×  105 
P14 cells were transferred intravenously into recipient mice. One hour after adop-
tive transfer, recipient mice were infected intraperitoneally or intratracheally with 
2 ×  105 PFU LCMV Armstrong or intradermally with 2 ×  104 PFU clone 13. In 
similar experiments, P14 cells were transduced with MigR1-based retroviruses34 
that were empty (GFP-RV) or that contained Runx3 cDNA (Runx3-RV), mixed 
1:1 and transferred to recipient mice for subsequent infections. For T-bet rescue 
experiments, Thy1.2+ Runx3+/+ Ert2-Cre YFP+ P14 cells were transduced with 
Cd19.1 shRNAmir and Thy1.1+ Runx3fl/fl Ert2-Cre YFP+ P14 cells were transduced 
with Tbx21.3 shRNAmir-encoding retroviruses, mixed 1:1 and transferred into 
recipient mice, which were infected 1 h later with LCMV Armstrong intraperito-
neally and treated with 1 mg tamoxifen intraperitoneally for five consecutive days 
starting with the day of infection.
Adoptive therapy tumour model. For adoptive therapy experiments, 5 ×  105 
B16-GP33 cells, which were treated for mycoplasma and authenticated in in vitro 
 killing assays, were transplanted subcutaneously into the right flank of wild-type 
mice. After tumours became palpable, 7–8 days after transplantation, in vitro 
expanded P14 cells were transferred intravenously. For comparison of TIL accu-
mulation in a mixed transfer setting, naive P14 cells were activated, transduced 
and expanded with 100 U ml−1 of IL-2 for 2–3 days; cells transduced with control 
constructs (Cd19.1 shRNAmir or GFP-RV) or experimental constructs (Runx3.2 
shRNAmir or Runx3-RV) were mixed 1:1 and 0.5 ×  106–1 ×  106 P14 cells were 
transferred intravenously. For efficacy studies, transduced cells were expanded for 
5–6 days; transduced cells were then sorted (or not sorted with a Runx3-RV and 
GFP-RV transduction efficiency > 83%), and 1 ×  106–2.5 ×  106 cells were trans-
ferred intravenously into mice with established B16-GP33 tumours. Tumours were 
monitored daily and mice with ulcerated tumours or tumours exceeding 1,500 
mm3 were euthanized, in accordance with UCSD IACUC.
Quantitative PCR, microarray, RNA-seq and ATAC–seq analysis. For validation 
of the Runx3-RV overexpression construct and Runx3.2 shRNAmir construct, 
enriched CD8+ T cells were activated, transduced, and expanded for 4–6 days in 
100 U ml−1 IL-2. Cells were sorted on ametrine (Runx3 shRNAmir or control shR-
NAmir) or GFP (Runx3-RV or GFP-RV) directly into TRIzol (Life Technologies), 
and RNA was extracted per manufacturer’s specifications. Next, cDNA was syn-
thesized using Superscript II (Life Technologies) and quantitative PCR (qPCR) 
was performed using the Stratagene Brilliant II Syber Green master mix (Agilent 
Technologies). Runx3 expression levels were normalized to the housekeeping gene 
Hprt. We have previously validated the Tbx21.3 shRNAmir16. The following  primers 
were used for qPCR: Runx3 forward, 5′-CAGGTTCAACGACCTTCGATT-3′,  
Runx3 reverse, 5′-GTGGTAGGTAGCCACTTGGG-3′; Hprt  forward,  
5′-GGCCAGACTTTGTTGGATTT-3′, Hprt reverse, 5′-CAACTTGCGCT 
CATCTTAGG-3′ .

On day 7 of infection, tissues from 2–3 mice were pooled and 2 ×  104–3 ×  104 
P14 cells from the IELs, kidney, spleen or blood were sorted into TRIzol. On day 
35 of infection, tissues from 5–10 mice were pooled and 1 ×  104–2 ×  104 CD62L+ 
TCM, CD62L− TEM, kidney TRM, and IEL TRM P14 cells were sorted into TRIzol. As 
described previously, RNA was amplified and labelled with biotin and hybridized 
to Affymetrix Mouse Gene ST 1.0 micrroarrays35. Analyses were performed using 
GenePattern Multiplot Studio. Differentially expressed genes in IEL TRM compared 
to TCM and TEM cells as well as kidney TRM compared to TCM and TEM cells were 
identified with a fold change > 1.5 and an expression value > 120 (Fig. 1a). Genes 
with > 1.5 fold change and > 120 expression value between day 7 spleen, day 7 
IELs, and day 7 kidney samples were identified (1,838 probes) and evaluated in 
day 7 and day 35 subsets, which were ordered with Pearson correlation using the 
HierarchicalClustering module of GenePattern (Fig. 1b); data were row centred, 
row normalized, and visualized with the HierarchicalClusteringViewer module 
in GenePattern.

The core tissue-residency cells and circulating signatures were generated by 
integrating differential expression (> 1.5 fold change) data comparing TRM cells 
from the  following tissues to circulating splenic memory cells (or splenic TCM if 
both TCM and TEM datasets were available): day 35 IELs (LCMV), day 35 kidney 
parenchyma (LCMV), day 30 skin CD103+CD8+ (herpes simplex virus)5, day 30 
lung CD103+CD8+ (influenza virus)5, and day 20 CD103+ brain (vesicular sto-
matitis virus)7; overlapping genes upregulated in all TRM cell populations com-
prised the core tissue-residency signature (121 genes) and genes downregulated 
in all populations comprised the circulating signature (93 genes). The mouse TIL 
microarray datasets were generated previously27.

For RNA-seq analysis of day 7 IEL, day 7 memory precursors, and day 7 terminal 
effectors, the populations were sorted on day 7 of LCMV Armstrong infection 

as well as naive P14 cells; spleens or IEL samples from 2–3 mice were pooled 
and 5 ×  103 cells were sorted. For RNA-seq analysis of TIL, congenically distinct 
P14 cells were transduced with Runx3-RV or GFP-RV, mixed 1:1 and 1 ×  106 cells 
were transferred to mice with day 7 established melanoma B16-GP33 tumours. 
Eight days later, 1 ×  103 transduced TILs or splenocytes were sorted from four 
mice for each  replicate. For library preparation, isolation of polyA+ RNA was per-
formed as detailed online (http://www.immgen.com/Protocols/11cells.pdf). For 
RNA-seq analyses of Runx3-manipulated cells, CD8+ T cells from naive Runx3+/+ 
YFP+ (wild type) and Runx3fl/fl YFP+ (Runx3fl/fl) mice were enriched by negative 
isolation and transduced (as detailed above) with a Cre cDNA-expressing retro-
virus (Cre-RV). Runx3-overexpressing cells were generated similarly by trans-
ducing Runx3+/+ YFP+ CD8 T cells with a Runx3 cDNA-expressing retrovirus 
(Runx3-RV). Forty-eight hours after T cell receptor activation, the CD8+ T cells 
were resuspended and re-cultured in fresh medium supplemented with 100 U ml−1 
rhIL-2; 24 h later, YFP+ (wild type or Runx3fl/fl) or GFP+ (Runx3-RV) were FACS-
purified and then recultured in 100 U ml−1 IL-2. The cells were expanded until 
day 6 by reculturing at 5 ×  105 cells per millilitre every 24 h in fresh 100 U ml−1 
IL-2 medium. On day 6 after activation, cells were collected and total RNA was 
extracted in TRIzol. Purified RNA was depleted of ribosomal RNA and strand- 
specific paired-end libraries were prepared and sequenced using an Illumina 
Nextseq 500. Samples were generated from two biological replicates, and approxi-
mately 20  million paired-reads were generated per sample. Reads were mapped 
using Tophat36 and aligned reads in transcripts were counted with HTseq37. GSEA 
was performed by using the GSEA module in GenePattern, and the normalized 
enrichment scores and false-discovery rate q values were determined by using the 
permutation test.

ATAC–seq was performed as described in detail previously24. Sorted cells 
(2.5 ×  104) were resuspended in 25 μ l of lysis buffer and spun down 600g for 
30 min at 4 °C. The nuclear pellet was resuspended in 25 μ l of Tn5 transposase 
reaction mixture (Nextera DNA Sample Prep Kit, Illumina) and incubated 
for 30 min at 37 °C. Transposase-associated DNA was subsequently purified 
(Zymo DNA clean-up kit). For library amplification, DNA was amplified using 
 indexing primer from Nextera kit and NEBNext High-Fidelity 2×  PCR master 
mix. Then, the amplified DNA was size-selected to fragments less than 800 bp 
using SPRI beads. The library was sequenced using Hiseq 2500 for single- 
end 50-bp  sequencing to yield at least 10 million reads. We used bowtie to map 
raw reads to the Mus  musculus genome (mm10) with following  parameters: 
‘–best -m 1’. We called peaks for each individual replicate as well as the  
pooled data from the two replicates using MACS2 with a relaxed threshold 
(P =  0.01).

For the single-cell RNA-seq analysis of human30 and mouse melanoma TILs29, 
the pre-processed single-cell TIL gene expression data were downloaded from GEO 
database with accessions GSE72056 or GSE86042, respectively. Activated CD8+ 
TILs (CD8α  expression >  5 and CD44 expression > 2) were used and classified 
into Runx3hi TILs, which express relatively high levels of Runx3 (Runx3 expres-
sion >  3) and Runx3lo TILs with no Runx3 expression (Runx3 expression =  0). 
For the human TILs, melanoma #75 was used. GSEA was performed to evaluate 
enrichment of the core tissue-residency gene expression signature in Runx3hi TILs 
relative to Runx3lo TILs.
Computational screen: transcription factor regulatory networks and per-
sonalized PageRank analysis. Transcription factor regulatory networks and 
PageRank analysis were performed as described previously24 except that gene 
expression and ATAC–seq data from day 7 IEL, kidney and spleen samples were 
used. To construct the transcription factor regulatory network, transcription 
factor- binding motifs were first scanned on ATAC–seq peaks using an algorithm 
described  previously14 and a P-value cut-off of 1 ×  10−5. Then, we connected 
a transcription factor to a gene if the factor had any predicted binding motif 
in the ATAC–seq peak of the nearest gene. We assembled all the interactions 
between transcription factors and genes into a regulatory network. To iden-
tify important transcription factor regulators for TRM cell differentiation, we 
performed personalized PageRank analysis in the transcription factor regula-
tory network constructed above using the pipeline described previously14. The 
importance of a transcription factor is based on the quantity and quality of its 
regulated gene targets. A factor would receive a higher PageRank score if it regu-
lates more important genes, where the importance is  evaluated by differential 
expression from microarray or RNA-seq analyses. Extended Data Fig. 2b and 
Supplementary Table 1 indicate the PageRank score and expression value of all 
transcription factors expressed (> 120 expression value) in the spleen, kidney or  
IEL cells.
Statistical analysis. Student’s t-test (two-tailed) was used for comparisons between 
two groups. A log-rank (Mantel–Cox) test was used to compare survival curves. All 
microarray, RNA-seq, and ATAC–seq samples were performed independently in 
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2–3 replicates. All statistical tests were performed with GraphPad Prism software, 
and P <  0.05 was considered statistically significant. No statistical methods were 
used to predetermine sample size. Investigators were not blinded to allocation 
during experiments and outcome assessment.
Data availability. RNA-seq, microarray, and ATAC–seq data are available in  
the Gene Expression Omnibus (GEO) database under the SuperSeries reference 
code GSE107395. Source Data are provided in the online version of the manuscript. 
All other data are available from the corresponding author(s) upon reasonable 
request.
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Extended Data Figure 1 | KLRG1lo cells preferentially give rise to 
TRM cells. a, Left, representative flow cytometric gating strategy for 
distinguishing P14 cells located in non-lymphoid tissues after intravenous 
administration of CD8α  in LCMV-infected mice. Right, in vitro activated 
P14 cells were transferred to recipient mice and infected with LCMV; the 
frequency of CD69+ and CD103+ P14 cells among KLRG1hi and KLRG1lo 
on day 7 of infection is indicated. b, Frequency of CCR9, CXCR3 and 
CD49d in KLRG1lo and KLRG1hi cells in the IEL compartment on day 7 of 

infection. c, Top, schematic of experimental design. KLRG1lo and KLRG1hi 
P14 cells were sorted from spleens and lymph nodes on day 5 of LCMV 
infection and transferred into recipient mice infected 4 days previously 
with LCMV. Bottom, TCM, TEM and TRM P14 cells were enumerated on 
days 20 or 25 of infection using flow cytometry. Data are mean ±  s.e.m 
of n =  5 mice (a, b) or n =  3–4 mice (c) from one representative of 2 
independent experiments. * P <  0.05, * * P <  0.01, * * * P <  0.005 (Student’s 
t-test). Symbols represent an individual mouse (c).
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Extended Data Figure 3 | Runx3-deficiency impairs IEL TRM cell 
formation. a, Runx3 mRNA levels from indicated cells determined by 
microarray analyses. b, Relative Runx3 mRNA expression of in vitro 
cultured cells transduced with retroviruses encoding control shRNAmir or 
Runx3 shRNAmir, measured by qPCR. c, Congenically distinct P14 cells 
were transduced with retroviruses encoding Runx3 shRNAmir or control 
shRNAmir, mixed at a 1:1 ratio, and transferred to recipient mice that were 
subsequently infected with LCMV. Representative flow cytometry plots 
(bottom, left) and quantification of the ratio of P14 cells transduced with 
Runx3 shRNAmir or control shRNAmir in indicated tissues on day 12 of 
infection (bottom, right). d, Representative flow cytometry plots (left) and 

quantification of the frequency of CD69+ and CD103+ cells of control 
shRNAmir or Runx3 shRNAmir cells (right) from experimental schematic 
in c. e, Representative flow cytometry plots and quantification of the 
frequency of CD69+ and CD103+ cells from Fig. 2c. f, Representative 
flow cytometry plots and quantification of the frequency of CD69+ and 
CD103+ cells from Fig. 2e. Data are mean ±  s.e.m and representative of 
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n =  6 (LCMV) (e), and n =  5 (vehicle) or n =  3 (tamoxifen) (f). * P <  0.05,  
* * P <  0.01 * * * P <  0.005 (Student’s t-test). Symbols represent an individual 
mouse (c–f).
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Extended Data Figure 6 | Runx3-deficiency enhances TRM cell 
apoptosis but does affect trafficking or proliferation. a, Representative 
flow cytometry histogram of granzyme B (GzB) staining (left) and 
quantification of frequency of GzB+ cells on day 12 or 14 of infection.  
b, Representative flow cytometry plots (left) and quantification (right) of 
the frequency of IFNγ - and TNF-producing control shRNAmir or Runx3 
shRNAmir P14 cells on day 6 of LCMV infection, restimulated with  
GP33–41 peptide. c, d, Representative histograms and quantification of 
annexin V+ cells from shRNAmir mixed transfers on day 14 of LCMV 
infection (c) or from day 8 Runx3fl/fl and Runx3+/+ mixed P14 transfers in 
which tamoxifen was administered on days 2–5 of LCMV infection (d).  
e, Congenically distinct P14 cells were transduced with control shRNAmir 
or Runx3 shRNAmir encoding retroviruses, mixed at a 1:1 ratio, and 
transferred to recipient mice that were subsequently infected with LCMV. 

On day 6 of infection, splenocytes were collected and retransferred to  
day 5 infected host mice and 18 h later spleen, mesenteric lymph nodes 
and small intestine were obtained to assess trafficking. Representative  
flow cytometry plots (bottom, left) and quantification of the ratio  
of P14 cells transduced with control shRNAmir to Runx3 shRNAmir 
(bottom, right) in indicated tissues 18 h after transfer. f, Frequency of 
Ki-67+ control shRNAmir or Runx3 shRNAmir transduced P14 cells in 
a mixed transfer setting on days 6 and 12 or 14 of LCMV infection. Data 
are mean ±  s.e.m and representative of two independent experiments with 
n =  5 (a), n =  3 (b), n =  5 (c), n =  6 (d), n =  4 (e), and n =  3 on day 6 or 
n =  4 on day 14 (f) except d is pooled from two independent experiments. 
* P <  0.05, * * P <  0.01, * * * P <  0.005 (Student’s t-test). n.s., not significant. 
Symbols represent an individual mouse (a–f).
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Extended Data Figure 7 | Runx3 overexpression enhances lung TRM 
differentiation. a, Runx3 mRNA expression of in vitro cultured cells 
transduced with GFP-RV or Runx3-RV. b, Schematic for experimental 
design of intratracheal LCMV infection. c, Representative flow cytometry 
plots (left) and quantification (right) of the ratio of GFP-RV or Runx3-RV 
cells in the mediastinal lymph nodes (medLN), lung parenchyma, or 

CD69+CD103+ lung parenchyma population on day 12 or 13.  
d, Representative flow cytometry plots (left) and quantification (right) of 
the frequency of CD69+ and CD103+ P14 cells in the lung parenchyma. 
Data are mean ±  s.e.m and representative of one of two independent 
experiments (a) and n =  4 per group (c,d). * P <  0.05, * * * P <  0.005 
(Student’s t-test). Symbols represent an individual mouse (c, d).
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Extended Data Figure 8 | Runx3 regulates distinct gene programs in 
circulating cells versus tissue resident cells and operates upstream of 
T-bet in programming IEL TRM cell differentiation. a, Percentage of 
genes of the core tissue-residency signature, core circulating signature, 
or background sites that exhibit direct Runx3 binding by ChIP–seq 
analysis23. b, Left, predicted Runx3 binding network, generated from 
ATAC–seq analysis, in IEL P14 cells and splenic P14 cells on day 7 of 
infection. Red indicates genes putatively regulated by Runx3 in IEL cells; 
grey indicates genes putatively regulated by Runx3 in splenic cells. Right, 
Gene Ontology (GO) enrichment analysis of gene sets in the predicted 
Runx3 binding network in each tissue. c, Runx3 ChIP–seq of the Tbx21 
locus in naive and activated CD8+ T cells from ref. 23. d, Representative 
flow cytometry histograms (left) and mean fluorescent intensity (MFI) 
quantification (right) of T-bet expression in splenic P14 cells on day 8 of 
infection. e, Schematic for experimental design (left) in which Runx3+/+ 
Ert2-Cre+ YFP were transduced with control shRNAmir and Runx3+/+ 

Ert2-Cre+ YFP P14 cells were transduced with Tbx21 shRNAmir, mixed 

1:1 and transferred into recipient mice subsequently infected with LCMV. 
Recipient mice were treated with tamoxifen on days 0–4 of infection. 
Representative flow cytometry plots (middle) and quantification of the 
ratio of untransduced (ametrine−) Runx3+/+ and Runx3fl/fl P14 cells 
and the ratio of transduced (ametrine+) Runx3+/+ control shRNAmir to 
Runx3fl/fl Tbx21 shRNAmir (right) were evaluated on day 12 of LCMV 
infection. f, Representative flow cytometry plots (left) and quantification 
(right) of the frequency of CD69+ and CD103+ cells. g, Runx3 ChIP–seq 
of the Klf2 locus in naive and activated CD8+ T cells23. h, Fold change in 
gene expression of Klf2, S1pr1 and Ccr7 in Runx3fl/fl and Runx3-RV cells 
relative to Runx3+/+ wild-type cells, from RNA-seq analysis consisting of 
two replicates per sample. Data are mean ±  s.e.m and representative of one 
of two independent experiments with n =  6 (Runx3fl/fl) or n =  4 (Runx3 
shRNAmir) (d) and n =  4 (e, f) per group. * P <  0.05, * * P <  0.01  
* * * P <  0.005 (Student’s t-test). Symbols represent an individual  
mouse (d–f).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 9 | Runx3-deficiency does not impair trafficking 
to the tumour but does affect the effector phenotype of TIL. a, Schematic 
of adoptive therapy experimental design. b, Congenically distinct P14 
cells were transduced with retroviruses encoding Runx3 shRNAmir or 
control shRNAmir, mixed at a 1:1 ratio, and transferred into mice with 
established B16-GP33 melanoma tumours. Eighteen hours after transfer, 
tumours were collected to assess the ratio of Runx3 shRNAmir to control 
shRNAmir P14 cells. c, Representative flow cytometry histograms of 

control shRNAmir, Runx3 shRNAmir, GFP-RV, or Runx3-RV TILs 
in mixed transfer settings. Control P14 splenocytes were included in 
histograms for reference. d, Gene set enrichment analysis of the core 
tissue-residency and core circulating gene signatures in human lung CD8+ 
TILs relative to corresponding CD8+ PBMCs25. Data are mean ±  s.e.m and 
combined of two independent experiments with n =  5 mice per group (b) 
or representative of two independent experiments with n =  3–6 per  
group (b). Symbols represent an individual mouse (b).
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Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 
items might not apply to an individual manuscript, but all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research 
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist. 

    Experimental design
1.   Sample size

Describe how sample size was determined. Based on previous and preliminary studies within our lab, we predicted the 
reported sample sizes would be sufficient to ensure adequate power. For Figures 2 
and 3, we expected to see a 50-75% difference in Runx3-deficient Trm compared 
with control Trm cells in shRNA and KO models or Runx3-RV compared to GFP-RV 
cells; therefore, a sample size of n=3-8 was chosen to allow determination of at 
least a 50% reduction in Trm (t-test, α set at 0.05). For Figure 4 d,e we also 
expected to see  50-75% difference in Runx3 shRNA TIL compared with control 
shRNA TIL or Runx3-RV compared to GFP-RV TIL; therefore, a sample size of n=3-7 
was chosen to allow determination of at least a 50% reduction in TIL accumulation 
(t-test, α set at 0.05). For Figure 4 g,h, we expected to see a 20-50% difference in 
tumor size and mortality between Runx3 shRNA and control shRNA groups or 
Runx3-RV and GFP-RV groups; therefore, a sample size of 10-21 was chosen (t-test, 
α set at 0.05 or Log-rank test). Figure 1 sample sizes were chosen to achieve a 
sufficient cell number after sorting for subsequent processing, based on previous 
experiments within the lab.

2.   Data exclusions

Describe any data exclusions. No data were excluded from analyses except in adoptive transfer/LCMV infection 
experiments, recipient mice that rejected transferred P14 cells (<~5%) were 
excluded (Figures 2-3).

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

All attempts at replication were successful.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Mice were chosen at random for each group prior to all adoptive cell transfers and 
all tumor transplants.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

For all mixed transfer experiments, blinding is not relevant. For tumor growth 
assessments, the investigator was aware of the cell type the was transferred into 
tumor-bearing mice.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

The PageRank analysis utilized in Figure 1 was described in detail previously (Yu et 
al., Nat. Immunol, 2017).

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

All unique materials used are readily available from the authors.
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9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

The antibodies are described below. All antibodies were purchased from 
eBioscience unless specified. All antibodies were validated by manufacturer. 
 
 
Antibody  Clone Color  Catalog #  Lot # 
 
CD8a 53-6.7 eFluor780 470081-82 4322567 
     
CD8b eBio H35-17.2 BV421 (eFluor450) 480083-82 E16107-105 
CD8b eBio H35-17.2 PE 12-0083-82 4287758 
     
CD62L MEL-14 BV510 (BioLegend) 104441 B213054 
CD62L MEL-14 PE-Cy7 25-0621-82 4277103 
CD62L MEL-14 Fitc 11-0621-82 4278965 
     
CD127 A7R34 PE-Cy7 25-1271-82 E07599-1635 
     
KLRG1 2F1 PB (eFluor450) 48-5893-82 4271587 
KLRG1 2F1 APC 17-5893-82 4323183 
     
CD103 2E7 Fitc 11-1031-85 E00455-1634 
CD103 2E7 PE 12-1031-83 4303133 
CD103 2E7 Percp Cy5.5 (BioLegend) 121412 B212948 
     
CD69 H1.2F3 Percp Cy5.5 45-0691-82 4313339 
CD69 H1.2F3 BV711 (BioLegend) 104537 B240847 
     
CD45.1 A20-1.7 BV785 (BioLegend) 110743 B231586 
CD45.1 A20-1.7 PB (eFluor450) 480453-82 4313590 
     
CD45.2 104 APC 17-0454-82 4290825 
CD45.2 104 Percp Cy5.5 45-0454-82 4277873 
     
Thy1.1 OX-7 PB (BioLegend) 202529 B231585 
Thy1.1 OX-7 PE-Cy7 250900-82 E07586-1633 
     
Thy1.2 53-2.1 APC 17-0902-82 E07187-1635 
Thy1.2 30-H12 BV785 (BioLegend) 105331 B229101 
     
CCR9 eBio CW-1.2 PE-Cy7 25-1991-82 4278641 
     
CXCR3 CXCR3-173 PE 12-1831-82 4299803 
     
CD49d R1-2 Fitc 11-0492-85 E003441630 
     
T-bet 4B10 PE-Cy7 (BioLegend) 644823 B214293 
     
TNFa MP6-XT22 APC 17-7321-82 E07384-1631 
     
GzB GB11 PE MHGB04 1850394 
GzB GB11  APC MHGB05 1884625 
     
PD-1 J43 APC-Cy7 47-9985-82 4324436 
     
Tim3 RMT3-23 PE 12-5870-82 E01844-1634 
     
Lag3 eBio C9B7N Percp Cy5.5 46-2231-82 4295768 
     
KI-67 SolA15 PB (eFluor450) 48-5698-82 4297555
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10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. B16 mouse melanoma cells expressing B16gp33-41 were used, and were gifted by 

Alain Lamarre (INRS). 

b.  Describe the method of cell line authentication used. B16-GP33 has been authenticated in our lab, as they form melanoma tumors and 
using P14 T cells in killing assays to confirm GP33 expression..

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

B16-GP33 cells were treated for mycoplasma contamination prior to use.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

All mice were of a C57BL6/J background and bred at UCSD and TSRI-FL or 
purchased from the Jackson Laboratory, including: WT or P14 mice with distinct 
expression of the congenic molecules CD45.1, CD45.1.2, CD45.2, Thy1.1, Thy1.1.2, 
and Thy1.2 as well as control Thy1.2+ Runx3+/+Ert2-Cre+YFP P14 mice and Runx3 
inducible deletion Thy1.1+Runx3fl/flErt2-Cre+YFP P14 mice. Runx3+/+dLck-Cre+YFP 
and Runx3fl/fldLck-Cre+YFP mice were used for studying polyclonal CD8+ T cell 
responses. The Rosa26 stop-flox eYFP reporter mice were used for all Runx3-
deletion experiments. Both male and female mice were used, and all mice were 
used at 6-20 wks of age.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The study did not involve human research participants.
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Flow Cytometry Reporting Summary
 Form fields will expand as needed. Please do not leave fields blank.

    Data presentation
For all flow cytometry data, confirm that:

1.  The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

2.  The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of 
identical markers).

3.  All plots are contour plots with outliers or pseudocolor plots.

4.  A numerical value for number of cells or percentage (with statistics) is provided.

    Methodological details
5.   Describe the sample preparation. For isolation of CD8+ T cells from the small intestine intraepithelial 

lymphocyte (IEL) compartment, Peyer’s patches were removed and the 
intestine was cut longitudinally and subsequently cut laterally into 
0.5-1cm2 pieces that were then incubated with 0.154mg/mL 
dithioerythritol (DTE) in 10% HBSS/HEPES bicarbonate for 30min at 37°C 
while stirring. Kidneys, salivary glands and lungs were cut into pieces and 
digested for 30min with 100 U/mL type I collagenase (Worthington) in 
RPMI 1640, 5% FBS, 2mM MgCl2, 2mM CaCl2 at 37°C while shaking. Skin 
was processed similarly as described (ref 50) in which a 2cm2 area of the 
right flank was excised, pre-digested for 30min at 37°C and then 
enzymatically digested with 0.7 mg/mL collagenase D. After enzymatic 
incubations (skin, lungs, kidneys, salivary glands), tissues were further 
dissociated over a 70μm nylon cell strainer (Falcon). For isolation of 
lymphocytes, single-cell suspensions were then separated using a 44/67% 
Percoll density gradient. Spleens and lymph nodes were processed with 
the frosted ends of microscope slides. Red blood cells were lysed with ACK 
buffer (140 mM NH4Cl and 17 mM Tris-base, pH 7.4). 

6.   Identify the instrument used for data collection. For flow cytometry analysis, all events were acquired on a BD LSRFortessa 
X-20 or a BD LSRFortessa.

7.   Describe the software used to collect and analyze 
the flow cytometry data.

The software used for collecting was BDFACS Diva software and for 
analyzing FlowJo software was used.

8.   Describe the abundance of the relevant cell 
populations within post-sort fractions.

The purity of sorted samples were typically >98% pure. To check purity, an 
aliquot of sorted cells was analyzed or in cases where cells were sorted 
directly into Trizol, an additional aliquot of cells were sorted and purity 
was checked. 

9.   Describe the gating strategy used. For all analyses, gating schematics consisted of FSCxSSC gating of 
lymphocytes followed by singlet discrimination gates.  
 
For Figure 1, all sorted cells from the mLN, spleen or blood were sorted 
based on CD8a+ and congenic markers followed by CD127, KLRG1 or CD62l 
as indicated. For IEL or kidney populations CD8a IV negative CD8b+ cells 
were gated on and congenic markers were used for sorting.  
 
For Figure 2 and 3, CD8a+ cells were gated on, then ametrine (shRNA 
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experiments) or YFP (knockout experiments) then congenic markers 
(CD45.1, CD45.2, CD45.1.2, Thy1.1, Thy1.1.2 or Thy1.2) were gated on to 
distinguish mixed populations. Subsequent analysis of congenically distinct 
populations included expression levels of CD103, CD69, propidium iodide 
and Annexin V.  
 
For Figure 3, the same gating strategy was used as in Figure 2 except 
transduced cells were GFP+ instead of ametrine+. Gating and sorting 
strategy for Fig. 3 RNAseq data is discussed in Methods (p. 18). 
 
For Figure 4, analysis of mixed transfer populations in tumors was 
performed as described for Figure 2. Transduced and expanded P14 cells 
were sorted on Ametrine or GFP reporter expression for efficacy 
experiments. 

 Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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tissues and tumours
J. Justin milner, clara Toma, bingfei Yu, Kai Zhang, 
Kyla Omilusik, Anthony T. Phan, dapeng Wang, 
Adam J. Getzler, Toan Nguyen, Shane crotty, Wei Wang, 
matthew e. Pipkin & Ananda W. Goldrath

Nature 552, 253–257 (2017); doi:10.1038/nature24993

In this Letter, owing to errors introduced during the proofreading 
process, the words ‘infection with’ were missing from the sentence 
“Furthermore, Runx3 RNAi also impaired TRM cell differentiation in 
the context of a localized infection with enteric Listeria monocytogenes 
expressing GP33–41 (LM–GP33–41) (Fig. 2b).” In addition, in Fig. 1a, the 
x-axis label for the bottom right graph should have read “Expression 
change log2(D7 kid/D7 TCM)” rather than “Expression change log2(D35 
kid/D35 TCM)”. In Fig. 1e, the arrow pointing from the spleen to TCM 
should have been enlarged and aligned with the arrow above, and in 
the heat map in Fig. 1f ‘Irf4’ should have been non-italic upright font. 
These errors have all been corrected in the online versions of the Letter. 
Supplementary Information to this Corrigendum shows the original 
uncorrected Fig. 1, for transparency.

Supplementary Information is available in the online version of this 
Corrigendum.
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